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Analysis of a Feature-independent Hyper-heuristic Model
for Constraint Satisfaction and Binary Knapsack Problems

by
Xavier Fernando Cuauhtémoc Sánchez Dı́az

Abstract

This dissertation is submitted to the Graduate Programs in Engineering and Information Tech-
nologies in partial fulfillment of the requirements for the degree of Master of Science with a
major in Intelligent Systems.

This document describes and analyzes empirical results of an evolutionary-based hyper-
heuristic model applied to Binary Knapsack Problems (0/1 KP) and Constraint Satisfaction
Problems (CSP). Hyper-heuristics are high-level methodologies that either select among ex-
isting algorithms or generate new ones for solving complex problems. The objective of this
dissertation is to contribute to the knowledge about hyper-heuristics and propose a model
which is feature-independent in order to obtain competing solutions on a variety of fields.

The CSP is a classical example of a complex problem where the solution is a valid as-
signment of variables in order to satisfy a set of constraints. It has many applications including
knowledge representation, scheduling and optimization. Although there could be many solu-
tions to a single CSP instance, finding them could represent a hard challenge—its complexity
is, in general terms, computationally intractable.

With many real-life applications like allocation and cargo loading, the 0/1 KP is another
example of complex problems, and is one of the most studied in the optimization branch. Its
description can be summarized as finding a selection of items packed in a container which
yields the highest profit without violating a capacity constraint.

Both KPs and CSPs can be stated as classical search problems, undergoing through a
search tree associated to a problem instance. Each node in the search tree is a decision point—
a variable in CSP or an item in KP. For each of these decision points many different heuristics
can be used. Finding the right heuristics at the right decision points requires of efficient
strategies, since an exhaustive search may be impossible due to the exponential growth of the
variables involved in the problem. Many heuristics that are feasible and efficient exist for
both CSPs and KPs. Nevertheless, these methods usually require delicate setup and constant
monitoring as it may be necessary to adjust some parameters in order to get a solution within
an acceptable time frame.

The concept of hyper-heuristics holds high relevance in this context since new solutions
can come up from already known heuristic methods. In order for the hyper-heuristic to ap-
propriately map a method to a state of the search problem, it needs some criteria. Usually
problem characterization is useful in this process—two problem instances with similar fea-
tures are very likely to be solved efficiently in the same manner. However, problem character-
ization may be especially difficult in some cases, as most real-life situations usually feature
hyper-dimensional search spaces which are non-calculus friendly. In this dissertation we are
interested in developing a solution model able to come up with general methods that show
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good performance even when dealing with no problem characterization whatsoever. Hav-
ing a more flexible solution model allows for an easier adaptation of the framework to other
domains, where problem characterization may be somewhat difficult.

This document explores an evolutionary approach to generate hyper-heuristic from a
pool of already known heuristics. Experiments suggest that the model is able to find and
exploit key decision points in both KP and CSP. The model can also find better solutions
from mixing heuristics that perform poorly on their own. However, the method is prone to
overfitting under certain conditions. The general idea of this dissertation is to provide a better
understanding on the generality aspect of hyper-heuristics and provide a feature-independent
model to generate hyper-heuristics in order to tackle a variety of combinatorial optimization
problems.
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Chapter 1

Introduction

In computer science, problems are classified according to their complexity. Although finding
the solution to some problems could be computationally difficult, some of them are easily
verifiable if a solution to the problem is known. These problems are called Non-deterministic
polynomial problems, and are represented with the acronym NP. The term Non-deterministic
polynomial suggests that the amount of resources needed to solve one of these problems is
polynomial when using a non-deterministic Turing machine. If a polynomial-time method for
solving a problem is known, then the problem is assigned to the polynomial class, represented
with P. However, if no polynomial-time solution method is known, an exhaustive search may
be necessary (in a worst-case scenario) to find the optimal solution for such problem [69].

Some other problems may not be easily verifiable (not NP), but may still be hard to
solve nonetheless. The halting problem is a well-known example, which cannot be solved by
any computer no matter how much time one allows the algorithm to run. If an algorithm that
could solve it existed, then all NP problems could be solved in a similar manner. These types
of problems are in the so-called NP-hard class [68]. The halting problem is NP-hard but not
NP.

However, if a problem is both NP and NP-hard, it is referred to as being Non-deterministic
Polynomial Complete, often abbreviated as NP-C [11], [56], [67]. These problems are con-
sidered the hardest of all NP problems [21]. The amount of possible states (and thus, the
time needed to find a solution) grows faster than the number of variables involved in these
problems. Because of this wide gap in complexity, proposed solutions for NP-C problems are
actually approximations most of the time; doing an exhaustive search of all possible combi-
nations may not be feasible.

The constraint satisfaction problem (CSP) is an important problem in the field of artifi-
cial intelligence and optimization. CSPs have many real-life applications such as scheduling,
knowledge representation, diagnosis, resource allocation and network optimization [15]. The
CSP is NP-complete—Finding a solution is not a trivial task. A CSP solution is an assignment
of a value to each variable in order to comply with all the problem constraints.

The 0/1 Knapsack Problem (KP, also referred to as binary KP) is another significant
problem in optimization. KPs are used to model cargo loading, cutting stock, allocation and
cryptography problem situations. The KP belongs to the NP-Hard class, which makes finding
an optimal item combination as hard as deciding if there is any such combination which yields
a certain minimal value without exceeding the capacity constraint.
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CHAPTER 1. INTRODUCTION 2

Many methods to solve a CSP exist, but none is equally good for all problem instances.
This behavior suggests that each instance is more suitable to be solved by a given technique.
The same could be said for the binary KP, where the performance of a certain operator varies
greatly from instance to instance. A higher-level method which selects appropriate techniques
may be used to tackle on most problem instances, and a hyper-heuristic is a good candidate
for this task [5].

This work includes the review of feature-independent hyper-heuristic model applied to
both the CSP and the 0/1 KP. Results are analyzed and contrasted in order to generalize the
proposed method to other areas of combinatorial optimization.

1.1 Problem Definition and Motivation
A CSP consists of three components: a set of variables, a set of domains (one for each vari-
able) and a set of constraints which specifies allowed combinations of assigned values for
variables.

Each domain consists of a set of allowed values for each variable. Each constraint is an
ordered pair that contains a relation between two variables and their limitations, either in the
form of a list of allowed values or a condition describing these constraints.

A variable assignment that satisfies all the constraints is called a consistent or legal as-
signment. If a consistent assignment is also complete (when all variables have been assigned)
then a solution has been found. There could be many solutions for a single instance of a
CSP [52]. When looking for a solution in a CSP, the assignment of each variable should be
checked against the whole set of constraints. This process ensures the assignment is consis-
tent, and it is usually called consistency check (CC). Consistency checks are a good way to
measure the efficiency of a given algorithm on a problem instance.

Another complex problem that will be covered in this thesis is KP. The 0/1 KP consists
on packing a selection of items inside a container (a knapsack, hence the name of the problem)
with limited capacity, in such a way that the capacity constraint is not violated and the profit
of the items in the knapsack is maximized.

There are many algorithms that use rules and trial and error approaches to find a solution
for these problems. These algorithms are called heuristics. Generally, heuristics are specifi-
cally designed for a given problem and often require some expertise to design and implement
them in everyday-use computers [8]. Most heuristics rely on precise adjustments of their
parameters and components, and most of this setup is usually done off-line and manually.

Different approaches to tackle on computationally hard problems exist. A first approach
consists on finding an approximate solution, using methods with some random elements at
certain degree, and reviewing possible solutions until finding one that meets a given perfor-
mance criteria. These algorithms using stochastic elements are amongst the best options to
solve complex problems [27].

In 1997, Wolpert and Macready described the No Free Lunch for Optimization theo-
rem [70]. This theorem states that all algorithms are equally efficient when evaluated on a
complete series of problems, no matter the evaluation criteria. Nevertheless, empirical studies
by Gomes and Selman show that, in many cases, the performance of an algorithm dominates
over all other methods for a given problem [27]. Analyzing these algorithms could lead to an



CHAPTER 1. INTRODUCTION 3

automatic selection of suitable solvers for problems in various fields of knowledge, and this
notion suggests a new concept to review: hyper-heuristics.

Hyper-heuristics can be defined as “algorithms to select or generate algorithms” [8]. As
opposed to heuristics, hyper-heuristics search the set of available heuristics to select or gen-
erate a solution for a given problem [50]. The process of selecting or efficiently designing a
hybrid heuristic is a search problem by itself [5], and results in an increment of the compu-
tation time. Under what circumstances is the use of hyper-heuristics viable when applied to
combinatorial optimization problems?

In order to either select or generate a solution, a hyper-heuristic must check all heuris-
tic methods available to decide which of them offers the best solution for a given problem
instance. Hyper-heuristics can be applied to CSPs or KPs in a similar manner. During this
learning process, each heuristic method is tested against an instance for a short amount of
time. There are different learning models for hyper-heuristics, and the learning phase may
vary its length depending of the particular hyper-heuristic model. For example, the learning
phase of a selection hyper-heuristic based on a generational genetic algorithm [31], roughly
consists of the following:

• An initial population of n heuristics.

• A set of k problem instances for testing.

• A maximum allowed runtime of t units of time for each available heuristic method.

These are the variables for each of the m generations, so the whole learning process
would take up to mnkt units of time.

At first sight, the cost of solving a problem with a hyper-heuristic may not appear de-
sirable. Nevertheless, if the proposed solution by a hyper-heuristic method actually requires
fewer CCs than a simple heuristic (when applied to CSPs), then there could be an improve-
ment in computing time for each of the problem instances that were solved. In the case of
KP, if the hyper-heuristic method yields better results than an operator run in isolation, it may
be worthwhile to go with a high-level method instead. This improvement may manifest in
different forms. For example, when solving a large number of KP problem instances, the total
profit of such instance set is expected to be greater for an efficient hyper-heuristic if it has an
edge over a simple heuristic on most instances. A significant improvement in profit may also
be relevant if packing expensive materials, where the profit gains outweigh the hyper-heuristic
training cost.

Hyper-heuristics have been previously applied to both CSPs (see [8], [43], [44], [45],)
and packing problems (see [7], [16], [17], [28], [33] and [54]). Nevertheless, little has been
described about their use and the interaction between lower-level selected or generated heuris-
tics. This “automated” aspect of hyper-heuristics represents an unexploited potential for find-
ing solutions to these problems.

It is of high importance to determine if the learning cost of a hyper-heuristic is viable
for the development of CSP and KP solvers. First of all, many optimization problems in
the industry can be represented using a CSP or the binary KP. For example, bin packing and
cutting-stock problems, vehicle routing, time-tabling and scheduling [14], [34], [38].
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Characterizing the learning behavior in hyper-heuristics is a key factor for a better un-
derstanding of these high-level algorithms. Identifying these conditions may have a great
impact on solution methods for both decision and optimization problems such as CSPs and
KPs.

1.2 Objectives
The main objective of this work is to conduct an experimental analysis of a feature-independent
hyper-heuristic model applied to both constraint satisfaction and knapsack problems. We ex-
pect to define key factors that are relevant for the implementation and improvement of this
hyper-heuristic model to see if its application is possible for other domains in combinatorial
optimization.

The analysis focuses on the efficiency of the learning mechanism, as well as the interac-
tion between selected heuristic methods. To achieve this general goal, the following particular
objectives are considered:

• Identify heuristic interaction patterns in the application of the hyper-heuristic model to
several instances of CSPs and 0/1 KPs.

• Determine the feasibility and repeatability of the hyper-heuristic model by comparing
it against isolated, simple heuristics on both CSPs and KPs.

• Justify the hyper-heuristic approach for 0/1 KPs and CSPs.

• Identify the advantages and disadvantages of the model in order to determine its viabil-
ity to tackle other combinatorial optimization problems.

1.3 Hypothesis
Evolutionary algorithms can deal with optimization problems even when no problem knowl-
edge is available. An experimental analysis of an evolutionary based, feature-independent
hyper-heuristic model applied to binary knapsack problems and constraint satisfaction prob-
lems will help identify factors that are key to improve algorithm design and application.

This work intends to answer the following research questions:

1. Does a combination of heuristics guarantee a more efficient solution than using stan-
dalone methods?

2. Is it possible to obtain a good solution from combining heuristics that perform poorly
in isolation?

3. Can the method be applied to decision problems as well?

4. Which conditions are necessary for the hyper-heuristic method to obtain quality solu-
tions in other combinatorial optimization problems?
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1.4 Solution Overview
This document explores the application of an evolutionary hyper-heuristic model for both KP
and CSP.

Overall, this investigation revolves around the fact that many combinatorial optimization
problems can be formulated as sequential search processes. Because an exhaustive approach
for these processes is infeasible, heuristic methods are used to determine which problem state
to search next. Many heuristics exist, but are often specialized in certain types of problems.
Another way to guide the search is to analyze problem features. However, real-life problem
situations usually contain noisy search spaces which are hyper-dimensional and non calculus-
friendly—concise problem characterization is not always possible.

The solution presented in this research provides a more flexible approach, based on the
idea of using a combination of different methods at appropriate decision points and thus create
more general solvers without the need of problem characterization. The extensibility of the
model allows for an easy cross-domain adaption at a certain extent.

This study explores different aspects related to optimization and hyper-heuristics. Firstly,
the need of appropriate training examples and objectives functions as they are crucial for guid-
ing the search. The second one is the repeatability of the algorithm, since it is essential for the
method to be used in different domains. The final aspect, which is perhaps the most important,
was the capability of the method to generate acceptable solutions from combining heuristics
which perform poorly when used in isolation.

For KP, bad decisions are easily identifiable and avoidable, since the objective function
is clearly defined—maximize profit. However, a bad decision in a CSP may still get to any of
the solutions, making it impossible to determine its performance as in other decision problems.
The hyper-heuristic in this dissertation considers maximizing profit as the objective function
for KP, and minimizing the amount of consistency checks for CSPs.

The hyper-heuristic method described throughout this investigation moves to states of
the problem which seem promising. The algorithm escapes from local optima using stochastic
‘jumps’ in the form of disruptive mutations, resembling the (1+1) Evolutionary Algorithm.
The resulting solution methods were tested on a wide set of instances, both from synthetic
datasets as well as instances from the literature.

1.5 Main Contributions
This dissertation delves into certain aspects of hyper-heuristics with little to no research avail-
able in the literature at the time of its writing. The most important contribution is the ex-
perimental analysis of a feature-independent hyper-heuristic model based on an evolutionary
algorithm. Results showed that even though the model was tested on KPs and CSPs, the
model can be applied to other domains of optimization with a few modifications. In a more
descriptive way, the contributions of this investigation are:

The analysis of a feature-independent hyper-heuristic model
The hyper-heuristic model analyzed in this work showed that mutation operators can be
used to tackle on difficult instances even if no problem features are known. The model
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revolves around an evolutionary metaphor, making it easy to implement and extend to
combinatorial optimization problems with concise objective functions.

Suitable solvers can be obtained from non-promising heuristics
When heuristic performance is lacking, or no known method is able to solve a problem
instance, a mixture of these operators may behave better than any of the components
alone. Diversity of operators, as well as taking the right decisions at the right time,
makes a hyper-heuristic a powerful tool to deal with complex problems.

A frequency analysis of heuristic interaction for CSP and KP
A frequency analysis was conducted for 2-place combinations of heuristics for both CSP
and KP. The evolution of the hyper-heuristics during the learning phase was analyzed
to determine which combinations of heuristics are favored by the learning method.

1.6 Outline of the Thesis
The ensuing chapters of this dissertation detail technical information relevant to this inves-
tigation. Chapter 2 presents the background and state of the art of the topics related: CSP,
KP, Hyper-heuristics and Evolutionary Algorithms. In Chapter 3, the methodology used dur-
ing this research is described. All phases of the investigation, including the experimentation
methodology, are detailed in this chapter along with their justification. Chapter 4 presents the
hyper-heuristic framework used and its technical and implementation details. This chapter
serves as a preamble of the two subsequent chapters. Chapter 5 shows the application of the
framework to the 0/1 Knapsack Problem and the analysis for that particular problem. The
application of the framework to the Constraint Satisfaction Problem and its analysis is pre-
sented in Chapter 6. Finally, Chapter 7 provides conclusions derived from the investigation. In
addition, different alternatives for future work are presented and their challenges described.



Chapter 2

Related Background

This chapter presents a detailed description of the concepts and topics related to this research.
A brief description of the problems at hand—both CSP and binary KP—is included, as well
as some heuristics used to solve them. The concept of hyper-heuristic is defined next– their
definition, characteristics and some background on their application to both CSPs and KPs.
Finally, a review of the state of the art is presented, where related work and research is de-
scribed.

2.1 Constraint Satisfaction Problems
This section covers a formal definition of the constraint satisfaction problem. A brief in-
troduction to key definitions is presented, followed by some measure concepts and common
solution methods used in CSPs.

2.1.1 Definitions and Formal Representation
A classic CSP can be represented as a set of three sets: a set of variables, a set of variable
domains and a set of constraints.

Variables are objects or items that can take on a variety of values. The set of all values
that a single variable can take is referred to as its domain. A constraint is a rule that imposes a
limitation on variables and the values they can take simultaneously [14]. A crossword puzzle
is one of the simplest examples of a CSP: there is a set of spaces we must fill (variables), a set
of available letters to choose from (values), and some rules we need to stick to (constraints).

A formal definition is as follows.
A CSP P is a triple P = 〈X,D,C〉, where

• X is an n-tuple of variables X = 〈x1, x2, . . . , xn〉,

• D is a corresponding n-tuple of domains D = 〈D1, D2, . . . , Dn〉 such that xi ∈ Di and

• C is a t-tuple of constraints C = 〈C1, C2, . . . , Ct〉

7
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A constraint Cj is a pair 〈RSj
, Sj〉, where RSj

is a relation on the variables in Si, i.e.
a subset of the Cartesian product of the domains of the variables in Si [22]. The number of
affected variables by a constraint Cj is known as the arity of the constraint [57].

The set of variables X in a CSP must be finite. Variable domains Di, however, could
be infinite (e.g. any numerical variable). Discrete domains are also common in CSPs, when
variables can take categorical or boolean values.

A solution to the CSP P is an n-tuple A = 〈a1, a2, . . . , an〉 where ai ∈ Di and each Cj

is satisfied in that RSj
holds on the projection of A in Sj [22].

A CSP may consist in finding any of the following three cases [64]:

• Any possible solution.

• All solutions of the problem.

• The optimal solution according to some domain knowledge.

This thesis focuses on CSPs as decision problems: is it possible to find a consistent
assignment for P , given X,D and C?

An specialization of the CSP where the domains are restricted to truth values D =
{T, F} and each constraint is a clause of k variables is known as the k-SAT problem, the first
problem proved to be NP-Complete [11]. Hence, CSP is also NP-Complete.

2.1.2 Searching in a CSP
Heuristics for solving CSPs look for values for each variable so that their assignment does not
violate any constraint. This solution can be found either with local search algorithms (which
do not assure finding a solution in all cases); or using complete methods that guarantee finding
a solution if at least one exists. Nevertheless, when bigger and more complex CSPs appear,
using exact methods is not feasible as the search space grows exponentially with the number
of variables, and so does the computing time to find a solution.

Search in a CSP is usually represented in an abstract way by using a depth search
tree [52]. When a variable is assigned in a CSP, all the constraints must be checked. If
there is any conflict between the variables given the existing constraint, then another value in
the domain of such variable should be assigned. If there is no value that does not violate any
constraint, then previously assigned variables must also be reassigned. There are many ways
to do this variable reassignment. Backtracking is one of these methods, which goes to the
immediately preceding level to modify the value of a variable already assigned [27]. Back-
jumping is a somewhat more efficient approach, as it jumps back many previous levels in the
search tree [45].

Since there could exist more than one solution that satisfies all conditions in the objective
function, it is important to note that some of these solutions could be easier to find than others.
This means that possible improvements of solution methods for CSPs are actually related to
improvements of the search method itself. The number of Consistency Checks (CC) can be
seen as a way to measure the efficiency [44] of such searching strategy.



CHAPTER 2. RELATED BACKGROUND 9

2.1.3 Measure Concepts in CSPs
There are some components that can be analyzed in order to measure the hardness of a CSP.
One of these characteristics is the size of the problem, which varies according to the number
of variables and subsequently their domain size. Because the size of a CSP consists of all
possible variable assignments, the size of the search space can be represented by the product
of the domain sizes ∏

xi∈X

mxi
(2.1)

The size of the problem N is the number of bits used to describe a point in the search
space [24], and it is expressed as:

N =
∑
xi∈X

log2mxi
(2.2)

Another meaningful concept to measure is the solution density. Solution density consid-
ers that each constraint ci prohibits a fraction pci of possible values assigned to variables, and
thus, a fraction 1− pci of assignments are allowed for that variable. Assuming all constraints
are independent, then we can calculate the average solution density ρ as the average fraction
of allowed assignments for all variables [24]:

ρ =
∏
ci∈C

(1− pci) (2.3)

The expected number of solutions is derived from the previous concepts and it is repre-
sented as E[S], which is the product of the size of the search space multiplied by the proba-
bility that any element in this search space is a solution [24]:

E[S] =
∏
xi∈X

(mxi
)×

∏
ci∈C

(1− pci) (2.4)

It is expected that computationally hard problems appear when E[S] ≈ 1 [42].
Constraint density (p1) represents the proportion of edges in the graph of constraints,

while constraint tightness (p2) denotes the proportion of conflicts in the problem instance.
For any CSP with arity a, the number of maximum edges in a constraint graph of n variables
is given by

(
n
a

)
. If e constraints exist in the problem instance, then the constraint density is

denoted as [42]:

p1 =
e(
n
a

) (2.5)

It is important to notice that the number of constraints in a CSP instance cannot exceed(
n
a

)
, and that the number of conflicts is defined by the number of involved variables and

their domains. Assuming variable domains to be of equal size, and that the problem instance
contains c constrained tuples [42], the tightness of a CSP instance is:

p2 =
c(

n
a

)
ma

(2.6)
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The factor κ derives from both the size and density of the solution, and is a general
measurement of how constrained a problem is. With lower values of κ, problems usually have
more solutions for their size. On the other hand, when κ is large, instances tend to have fewer
solutions or none at all. κ is defined as follows [24]:

κ =
−
∑

ci∈C log2(1− pci)∑
xi∈X log2(mxi

)
(2.7)

In this equation, ci represents a constraint in which the variable x is involved, mx repre-
sents its domain, and pci is the fraction of tuples that cannot be satisfied with the ci constraint.

2.1.4 Phase Transition in CSP
There exists a threshold under which the structure of a random graph G(n, p) (with n vertices
and a probability p of every edge occurring independently) changes from a scattered collection
of trees to a dense lump of components, and it is usually referred to as “the giant component”.
The short period where the giant component emerges is known as the phase transition.

Erdős and Rényi [19] showed that the size of the largest random tree, varying certain
parameters little by little, grew from O(log n) through Θ(n2/3) to Ω(n)—in other words, a
sharp increase in complexity [23].

Cheeseman et al. found critical values for many NP-complete problems: areas in the
search space where feasible solutions are clustered [9]. This was also the case for CSPs. For
CSP instances with few constraints, finding a solution is easy as there are lots of alternatives
to choose from. On the other hand, for CSPs with too many constraints there is a high chance
that no solution exists at all—this is also relatively easy to determine. Nevertheless, there
is a threshold where the value of some parameters can greatly influence the hardness of the
problem. These values are known as critical values, and are described in [9] and [10]. In the
case of boolean satisfiability (SAT), Mitchel et al. demonstrated that if the number of clauses
is around 4.3 times the number of variables, then the problem is nearly impossible to solve for
high number of variables [40].

Cheeseman et al. [9] also reviewed the order of assignment of variables in CSPs: choos-
ing a variable may allow the assignment of other variables that were previously constrained.
This forms a chain reduction that has a great impact on algorithm performance. Crawford and
Auton later confirmed the existence of a crossover point, where half of the randomly gener-
ated constraint satisfaction problems are actually solvable [12]. Below this crossover point,
complexity of 3-SAT problems (boolean satisfiability) grows almost linearly with the number
of variables involved. On the contrary, complexity grows exponentially for 3-SAT instances
above the crossover point. This behavior suggests that the order of variable selection in CSPs
heavily impacts computing time.

Studies by Gomes and Selman in [27] show that performance of backtracking drasti-
cally varies depending on how the next variable is selected, and in which order the possible
values are assigned to such variable. The first condition is referred to as the variable selection
strategy, while the latter is known as the value selection strategy.
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2.1.5 Common Heuristics for CSPs
There exist many heuristic methods for selecting the order in which variables are assigned
in a CSP. These heuristics may be based on variable domains, constraint levels or number of
conflicts. Some of these heuristics are described briefly in this section.

• The Max-Conflict heuristic selects the variable which is involved in most conflicts
amongst the constraint set. This will create a sub-problem that minimizes the number
of conflicts between the remaining unassigned variables.

• The Saturation degree method measures the number of already assigned variables con-
nected to a single node. This way, the heuristic will always select the variable connected
to the most assigned variables at a given time.

• Min-domain (or simply dom) prefers variables with the smallest domains. It is highly
likely that a variable fails to satisfy a constraint if it has a small domain.

• The dom/deg heuristic combines two parameters to decide which variable to assign
first: the size of its domain and the number of uninstantiated variables connected to
each node (known as the forward degree). The variable that maximizes the quotient of
the domain size over the forward degree will be the first variable selected.

• In the case of the kappa heuristic, the κ function is used to measure the difficulty of the
remaining instances. For this reason, the variable xi that maximizes Equation 2.7 will
be selected.

• The Rho heuristic was proposed by Gent [24], and uses the ρ parameter (Eq. 2.3 in Sec-
tion 2.1.3) to guide the search towards variables with less constraints, so that resulting
sub-problems are under-constrained and thus easy to solve.

• Weighted Degree (Wdeg) is another graph-based heuristic which directs the search
towards hard components of the search tree. A counter is assigned to every constraint
in the instance and is updated every time a dead-end is found. Variables with the highest
weighted degrees are preferred.

• Maximum forward degree is a heuristic which favors the variable with most connec-
tions to unassigned variables. This heuristic is also known as Deg.

It is important to note that the heuristic methods previously described are useful to deter-
mine the order for assigning the variables in a CSP. There are also heuristics used to determine
the order to assign the values of these variables. The most common heuristic for this task is
Min-conflicts. Min-conflicts will prefer values involved in the least conflicts in order to leave
the next assignments as flexible as possible. This way, resulting sub-problems should be easier
to solve, as each sub-problem will have more values to choose from [45].

An extended list of many other strategies for both variable and value ordering can be
found in [42], [65].

Selection strategies can greatly reduce computing time for CSPs. Understanding these
strategies is key to develop new solvers.
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2.2 The Binary Knapsack Problem
This section includes the formalization of KP and a brief description of common heuristics
used in this domain.

2.2.1 Definitions and Formal Representation
The 0/1, also called binary, KP is defined by Martello and Toth [38] as follows. Given a
knapsack of capacity c and a set of n items with profits pj and weight wj of item j; select a
subset of the items in order to

maximize z =
n∑

j=1

pjxj (2.8)

subject to
n∑

j=1

wjxj ≤ c, (2.9)

xj = 0 or 1, j ∈ N = {1, . . . , n}, (2.10)

where

xj =

{
1 if item j is selected;
0 otherwise.

(2.11)

The term “binary” in this case refers to the actual state of an item inside the knapsack:
it is either packed entirely or not included at all. This notion arises from other variants of KP,
for example the Fractional Knapsack Problem (FKP). In FKP, each item generates a cost and
thus the objective is to maximize the ratio of the total profit over the total costs [32]. This
research focuses on the binary variant of KP.

Looking at Eq. 2.8, one can see that KP is a linear integer programming problem, which
objective is to maximize a numerical value—it is looking for a single solution rather than any
of the feasible solutions available. In the case of KP, the solution is the subset of the set of
items with maximal profit and less than a capacity constraint. This notion contrasts the idea
of answering whether or not a solution exists, which is the case of the studied CSPs according
to the definition in Section 2.1.1.

2.2.2 Complexity and Solution Methods for KP
As Kellerer et al. describe, only pseudopolynomial algorithms are known for exact solutions
of KP: algorithms asymptotically bounded by a polynomial both in n (the size of the problem)
and in one (or several) of the input values. Even problems with small values for n may have
large coefficients and thus long running times when solved in this fashion [34]. As well as the
CSP, KP belongs to the NP-hard class of problems—finding the optimal solution of a KP is at
least as hard as deciding whether or not a CSP instance is solvable.

Despite the KP being an NP-hard problem, it is considered to be on the “easy” side of
these problems. Falkenauer considers KP as a grouping problem [20], which is characterized
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by a cost function where one item taken in isolation has little or no meaning for the entire
solution. Since the combination of appropriate decisions is what leads to an acceptable result,
it is of high importance to decide which item to pack next. After each item is packed, one
could represent the remaining subproblem as a new instance of KP with a reduced capacity
and a smaller partition of the set of items. These new instances could be solved either using
exact or approximate methods.

The Greedy Algorithm, perhaps the most natural of the approximate solution methods
for solving KPs, looks to pack the “best” item that can fit in the knapsack. If this item cannot
be packed, then it approaches the second best, and so on until no more items can be included in
the knapsack. The “greedy” idea is to sort the items in descending order according to certain
criteria (usually a ratio of cost over weight, more heuristics are described in Section 2.2.3) ,
and go one by one up to the end [34]. This approach runs in linear time after sorting the items,
which can be done efficiently in O(n log n) units of time.

A linear programming approach to get exact solutions is to include a “relaxation” for
the integrality constraint, so that “fractions” of the items can be included. The solution given
by this linear programming relaxation (LKP) is based on the local optima obtained by the
greedy approach: items are sorted in descending order and every item is subsequently packed
into the knapsack. When the greedy algorithm stops for the first time, there may be space still
available but not enough to pack a whole item. The optimal solution is then achieved packing
a corresponding fraction of the last item. As well as the greedy algorithm, LKP can be solved
in O(n log n) time units [34].

Optimal solutions for the KP can also be obtained using the dynamic programming ap-
proach: consider an optimal solution of a KP instance and then remove an item r. The remain-
ing solution is an optimal for the subproblem of capacity c− wr. This shows the presence of
an optimal substructure [11], which is the foundation of a dynamic programming application.
The solution method is then build using the following idea: Assume an optimal solution has
been found to a subproblem of KP (with a given subset of items). For each item added to
the set of items in the KP instance, the optimal solution must be checked. This check can be
performed using information of the previously solved KP subproblems, to see which is the
item that needs to change. The process is repeated for all items in capacity c, an the optimal
solution is then found in pseudopolynomial time.

An extensive collection of solution methods for the KP can be found in [34] and [38].

2.2.3 Common Heuristics for KP
As mentioned in Section 2.2.2, the greedy algorithm, the one covered in this work, sorts the
items of a KP according to certain criteria. This section lists the heuristics (also referred to as
packing operators) used in this research.

• Def (Default). Items are packed in their default order, as long as they fit in the knap-
sack. This heuristic runs in O(n) time, and the quality of the solutions obtained by this
operator are as inefficient as randomly packing items in the knapsack.

• Max-P (Max-Profit). Items are sorted from most valuable to less valuable, and then
packed in this order as long as they fit in the knapsack.
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• Max-PW (Max-Profit per Weight unit). For each item, a profit-over-weight ratio is
obtained. All items are then sorted from most valuable-per-weight-unit to less valuable.
Items are then packed in this order as long as the capacity constraint is not violated.

• Min-W (Minimum Weight). This heuristic favors lighter items. They are sorted in
ascending order according to their weight, and then packed in this order as long as the
capacity constraint is not exceeded.

All the ordering operators (Max-P, Max-PW and Min-W) run in O(n log n) time. While
all these three packing operators take longer to compute, they are expected to yield better
results than using no ordering at all (e.g. using the Default heuristic). These approximation
schemes may not seem attractive by the fact that the boundary between the optimum and the
proposed solution could be quite large. However, any approximation algorithm (e.g. Greedy)
can also compute an optimal solution in linear time [34]. Hence, the attractiveness of using
these approaches.

2.3 Hyper-heuristics
Another important concept is that of hyper-heuristics. To understand their significance, an in-
troductory take on learning mechanisms is studied along the hyper-heuristic definition. Hyper-
heuristic classification and a brief description of different models are presented later through-
out this section.

2.3.1 Hyper-heuristics and Learning Mechanisms
Hyper-heuristics can be considered high-level heuristics that select or construct algorithms to
solve complex problems [4]. They do not solve problems directly. Instead, they browse a
set of available solvers, searchers and heuristics that can solve the problem at hand [50]. To
determine which heuristic to use in which problem instance, a hyper-heuristic method may
undergo a learning process. This is one of the main problems tackled in artificial intelligence:
learning.

Although the term learning in computer science is usually associated with classification,
clustering, prediction and planning; the word itself describes any process which improves
performance of future tasks after making observations about the environment [52]. Alanazi
and Lehre present a mathematical definition of a learning mechanism within a selection hyper-
heuristic in [1]:

Let X be a finite search space and f : X → R be a cost function. Let m be the number
of low-level heuristics, and h(t)

j be the selected heuristic in iteration t. Let p(h(t+1)
k ) be the

selection probability of heuristic k in iteration t+ 1. A learning mechanism can be defined as
a function `:

((h
(i)
j , f(xi)))i=1,...,t → (p(h

(t+1)
k ))k=1,...,m (2.12)

where
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m∑
k=1

p(h
(t+1)
k ) = 1

In other words, a learning mechanism is a function mapping a pair of what-to-do and
how-well-it-went to a probability of doing what-to-do in the future. A hyper-heuristic is,
in this sense, a learning mechanism which comes up with a probability of using promising
algorithms when facing a given problem.

2.3.2 Classification of Hyper-heuristics
There are different ways to classify hyper-heuristics. Perhaps the most common is what Burke
et al. proposed in [6], where hyper-heuristics are categorized according to their learning
method or search models.

By learning type, hyper-heuristics are classified as follows:

• On-line learning. The learning process of these hyper-heuristic methods are executed
at runtime, when the algorithm is actually solving a problem instance. This way, char-
acteristics of the problem can be used to determine which heuristic method to use.

• Off-line learning. Hyper-heuristic methods obtain information from solving a set of
training instances, from which a general idea of how to solve the problem is learned so
that it is later applied to similar, but not known problems.

Hyper-heuristics can also be classified according to their solution approach:

• Constructive hyper-heuristics. All those hyper-heuristics that construct a solution in
an incremental way.

• Perturbation hyper-heuristics. These methods start with a complete solution, and
slowly alter some of its components in order to improve the algorithm on each iteration.

However, the most fundamental distinction is to separate hyper-heuristics according to their
methodology:

• Heuristic selection: methodologies for choosing or selecting existing heuristics.

• Heuristic generation: methodologies for generating new heuristics from the compo-
nents of existing ones.

Despite the natural differences between these methodologies, some elements in hyper-
heuristics may be generated while others being selected from existing components, so a com-
pletely orthogonal classification is far from ideal: Swan et al. further suggest that a hard
distinction between on-line and off-line learning may be a significant obstacle to progress in
hyper-heuristic design as it may exist some information gathered on-line that is useful off-line
and vice versa [61].
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2.3.3 Hyper-heuristic Models
As seen on Section 2.3.2, there are many approaches to the search problem when using a
hyper-heuristic. And, as a matter of fact, which element in the search space to look for and
deciding what to do next is an optimization problem by itself [61].

The hyper-heuristic search process may vary from one approach to another. Generation
hyper-heuristics, for example, search a space of construction blocks instead of the whole
solution space, as opposed to what selection strategies do [5]. The search process in a selective
hyper-heuristic can be divided, in general, into two phases: heuristic selection and move
acceptance—the former focuses on choosing an algorithm to solve the problem while the
latter deals with the solution quality [46].

In order for a selective hyper-heuristic method to choose amongst one of the available
heuristics, it needs a performance measure P (a). The heuristic method that maximizes the
expected performance E[P (a)] will be selected to solve that specific problem instance [50].
The solution can be, then, accepted or discarded according to an acceptance criteria.

Many classical learning mechanisms have been used as hyper-heuristic models, but soft
computing algorithms are perhaps the most common.

For constraint satisfaction problems, Poli and Graff used Genetic Programming (GP) as
a hyper-heuristic model [50] as well as Sosa-Asencio et al. [60], Lourenço et al. propose a
Grammatical Evolution algorithm (GE) [37], Ortiz-Bayliss et al. utilize a Genetic Algorithm
(GA) [43], as well as Terashima-Marı́n et al. [62]. A comparison of GP, GA and Neural
Networks can be found in [42].

Packing problems have also been tackled using hyper-heuristics. Hart and Sim describe
an Artificial Immune System (AIS) used as a hybrid hyper-heuristic for the Bin Packing Prob-
lem (BPP) in [28], [30], and [54]. Falkenauer [20] proposed a GA-based hyper-heuristic
model, and Burke et al. [7], Hyde [33] and Drake et al. [16], [17] studied GP rules for bin
packing and multi-dimensional KP.

There are some other, non-nature inspired approaches—Terrazas and Krasnogor use
grammatical inference in a hyper-heuristic constructive model [63], Arbelaez et al. use a Sup-
port Vector Machine (SVM) as a learning mechanism [3], while O’Mahony et al. propose
a case-based approach for algorithm portfolios [41]. Additionally, Alanazi and Lehre cover
limitations on additive reinforcement learning methods when used as hyper-heuristic mod-
els [2]. However, a thorough search of the relevant literature has shown that both selection
approaches and evolutionary algorithms are far more common in the state of the art.

This work focuses on a hybrid approach: mainly a selection hyper-heuristic with added
elements which are inherent to generation approaches, using an evolutionary algorithm. A
complete description of the framework is included in Chapter 4.

2.4 Heuristic Assessment and Selection
This section contains information which revolves around the idea behind the heuristic selec-
tion phase of selective hyper-heuristics: which algorithm should be used next? The word next
is crucial, since both in KP and CSP the solutions are obtained in a sequential way.

Hyper-heuristic methods applied to CSPs have been studied previously. The research
conducted by Ortiz-Bayliss et al. in [44], [45], and Wallace in [66] suggest that the use of
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different heuristic methods can reduce computing time in CSPs.
Given a set of k heuristics and a CSP instance with n variables, the maximum number

of sequences of heuristics that can be formed is kn, assuming that the problem is actually
satisfiable. However, combining heuristics is not enough to improve the search process—not
all heuristics work well when combined.

Ortiz-Bayliss et al. described some sequences of heuristics that work better than oth-
ers [45]. The sequential combination of kappa and dom/deg (both being variable order heuris-
tics for CSPs, detailed in Section 2.1) seems to work particularly better than other sequences
of heuristics. On the contrary, min-domain does not show good results when combined with
dom/deg. It is clear that selecting appropriate heuristics heavily impacts runtime for CSPs.
Likewise, KP also presents this behavior. As mentioned in Section 2.2.2, deciding which item
to pack next in the knapsack is a computationally hard problem—despite its natural feel, KP
is an NP-hard problem after all. The selection of the most suitable operator to use on the next
item (or variable, for CSPs) matches a well-studied problem in the literature, known as the
algorithm selection problem. The next section covers a more formal definition on this topic.

2.4.1 The Algorithm Selection Problem and Heuristic Performance
The idea of selecting the right algorithm for a given problem is known as the algorithm se-
lection problem (ASP), and was first described by Rice [51] in 1976. Formally, the algorithm
selection problem can be defined as [58]:

For a problem instance x ∈ P , with features f(x) ∈ F , find the assignment
S(f(x)) in an algorithm spaceA, so that the selected algorithm α ∈ Amaximizes
the performance of the assignment y(α(x)) ∈ Y .

This also applies to the algorithm selection problem of hyper-heuristic methods: a se-
lection hyper-heuristic needs to find an α algorithm in its available operators A, in order to
maximize the performance of such α algorithm when solving the problem instance x of its list
of available problem instances P .

It is here where heuristic performance and interaction comes into play. Smith-Miles [58]
presented a detailed review about several learning models for different problems: optimiza-
tion, constraint satisfaction, and regression and classification problems. The research also
proposes a framework which aims to achieve automatic selection of an algorithm no mat-
ter its application or knowledge domain. This framework comprises an empirical learning
approach that is divided into three phases:

1. Phase one requires meta-data generation for the domain of the problem, which is the set
of P,A, Y, F , as previously defined in the formal definition of ASP.

2. Phase two focuses on learning the relations between problem features F , and perfor-
mance measures of the algorithm Y , in order to create empirical rules and rankings for
each algorithm.

3. In phase three, empirical results of the learning process are compared against theoretical
results obtained in phase two, so that the learning process can be refined and hence
improvement is achieved.
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An implementation of this framework (applied to graph coloring problems) is presented
in [59]. Graph coloring problems can be represented as CSPs.

However, performance on hyper-heuristics is also a matter to consider. Defining param-
eters and resources used by hyper-heuristic methods is always a difficult task. Most of the
time, learning success is usually proportional to computing time or the storage capacity de-
fined for a hyper-heuristic method. In this way, this allocation of resources can be considered
a high-level control mechanism, instead of being a static dimension of the problem [61]. Nev-
ertheless, the running time over a particular problem instance cannot be guaranteed in most
solvers [53].

Because of this, it is common that users try to optimize the rate of how hyper-heuristic
search operators are applied—using a trial and error approach, for example—in order to ob-
tain a hyper-heuristic method that is able to find feasible algorithms which should be asso-
ciated with acceptable performance values, and using the least algorithms as possible. This
manual adjustment is too, in a sense, a searching process—one in which humans are the
searchers [50].

Likewise, Bai et al. suggested that the amount of allocated memory can influence the
performance of hyper-heuristics, and that a good decision (resource-wise) could improve the
quality of the solution [4]. Petrovic supports this idea: a full restart seems to improve per-
formance of the search, as well as the use of random subsets of variables (when dealing with
CSPs) [48].

Mısır et al. presented an empirical study in which the set of heuristics influences the
performance of hyper-heuristics, as well as the execution time: a hyper-heuristic throwing
good results in a short amount of time can reduce its performance if it runs for longer than
needed [39].

Lourenço et al. propose short learning phases for hyper-heuristics: a long learning
phase would imply that the performance of a hyper-heuristic would depend on solving small
instances or adopting parameters that minimize computational cost (e.g. population size or
number of iterations, etc.). Adopting excessively simple conditions can compromise results,
as differences between feasible and unfeasible strategies could be erased and therefore lead to
an inaccurate evaluation of the proposed solutions [37].

These findings suggest that problem features and heuristic interactions are key factors to
take into account when designing high-level methodologies. As problem features are difficult
to extract (and are domain or even instance-specific), there has been a trend to automate this
process (see [1], [29], [30], [36] and [55]). The proposed framework in this research takes into
account this notion, and employs an evolutionary approach in order to deal with combinatorial
problems in a more general way.

2.5 The (1+1) Evolutionary Algorithm
What is the easiest way to solve a problem? Is there a solution or method which feels natural?
Nature has always been a source of inspiration for humans when faced by problems, and
optimization is not the exception.

Pavlus presented an article on Scientific American in 2012 which included brief de-
scriptions of some nature-inspired systems like soap bubbles and DNA structures applied to
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NP-hard problems [47]. However, this idea of optimization using natural metaphors as data
structures dates back from way before. Focusing on evolution and natural selection, Hol-
land’s famous Adaptation in Natural and Artificial Systems book in 1975 introduced the sim-
ple GA [31]. This algorithm was designed with robustness and flexibility in mind, something
that exact methods and optimizers lack. The idea behind this approach is because, according
to Goldberg, the real world of search is populated with discontinuities and noisy search spaces
which are common characteristics of non calculus-friendly functions [25].

Later on, Droste et al. proposed a variant on the classical GA which the authors refer to
as the (1+1) Evolutionary Algorithm ((1+1) EA) [18]. As the name suggests, it is a variation
featuring a population of one individual which generates a single offspring. The (1+1) EA is
based on mutation only (since the population is of just one individual), strongly resembling
asexual reproduction of primitive cells. A formalization of the algorithm is as follows:

Algorithm 1 (1+1) Evolutionary Algorithm

1 pm ← 1/n . Set probability of mutation
2 Choose randomly an initial bit string x ∈ {0, 1}n
3 while Stopping criteria not satisfied do
4 Compute x′ by flipping independently each bit xi with probability pm
5 Replace x by x′ iff f(x′) ≥ f(x)
6 end while

Algorithm 1 can be seen as a variant on the hill-climbing method in which the neigh-
borhood is any point in the search space. Though convergence may seem slower using only
mutation and escaping from local optima seems easier with crossover approaches [13], some
modifications could be applied to enhance exploration.

Lehre and Özcan presented a variant of (1+1 EA) in [36] which chooses one of m muta-
tion operators based on a probability distribution p̄. This variant was tested using two mutation
operators for simple problems like ONEMAX and GAPPATH. In this research, we use this ap-
proach with additional mutation operators. The whole framework, including this variant, is
formally described in Chapter 4.

2.6 Summary
This chapter gave a general glimpse over the topics related to this investigation: constraint
satisfaction problems, the 0/1 knapsack problem, hyper-heuristics, the algorithm selection
problem and the (1+1) Evolutionary Algorithm.

The constraint satisfaction problem is a classic decision problem which may become
intractable due to its high complexity. The 0/1 knapsack problem is a combinatorial optimiza-
tion problem which, as well as the CSP, has many real-life applications despite its complexity.
This is why both problems are important in the field of combinatorics.

A hyper-heuristic is a high-level algorithm which solves a problem by either selecting
low-level heuristics or generating new algorithms from a set of operators. When deciding
which operator to use for which part of the search, the hyper-heuristic faces a problem known
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as the algorithm selection problem. Problem features and objective functions are used to
determine which heuristic is the best suited for the subproblem at hand.

Evolutionary approaches have been widely used to tackle combinatorial problems, and
also as learning models for hyper-heuristics. The (1+1) EA is an evolutionary algorithm
which employs the metaphor of an individual as a set of features. The individual is cloned
and then undergoes a mutation process which may alter its features. The clone and the original
individual are compared using an objective function, and the best of the two is kept for the
next generation. The process is repeated until a stopping criteria is met.

Chapter 3 reviews the methodology used during this research, while Chapter 4 includes
the specific details of the hyper-heuristic model.



Chapter 3

Methodology

This chapter provides a detailed description of the methodological process used during this
research, which is separated into three different phases and presented in chronological order.

3.1 Phase I. Understanding Background
This first phase of the methodology consisted of two branches of theoretical computer sci-
ence areas: combinatorial optimization problems, their properties and how to solve them; and
Hyper-heuristics—their generation and application to computationally complex problems.

Combinatorial problems usually come in the form of optimization: find the best ar-
rangement of items according to certain criteria; but another common representation is that of
a decision query: is this arrangement possible? Could an arrangement like this be found un-
der these conditions? To exemplify these concepts, two key problems in combinatorics were
considered: CSP and KP—the former being a decision problem and the latter an optimization
problem.

Phase I included a vast study of the state of the art in these fields. Regarding CSP
and KP, the study focused on solution methods, heuristics and their complex nature. In the
hyper-heuristic domain, we studied their definition and their classification, the different mod-
els used for training and the impact of appropriately selecting the algorithm when solving
an instance—the algorithm selection problem. Basic concepts of evolutionary computation
were also reviewed to understand the implications of the parameter selection when training
the hyper-heuristic. This information was compiled and is included in Chapter 2 so to let the
reader learn the basic concepts about optimization problems, but more importantly, to em-
phasize that the impact of choosing the right operator at each state of the problem should be
understood as the basis of a whole line of research.

3.2 Phase II. Justification of the Hyper-heuristic Approach
Since previous work on CSP has shown that combining heuristics yields good results, can one
found any sequence of heuristics that works better than others? The same inquiry was brought
to a different field in combinatorics: the binary Knapsack Problem.

21
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During this phase, efficiency tests were conducted on synthetically generated 0/1 KP
instances and then compared against random methods. Results were satisfactory: a hyper-
heuristic method yielded, most of the time and for most of the instances, more efficient solu-
tions than random methods. This sparked curiosity over the idea of a hyper-heuristic model
for obtaining better solutions than those from greedy packing heuristics run in isolation. A set
of experiments was designed in order to test if there was something valuable that the model
could learn from the test instances.

3.3 Phase III. Experiments and Analysis
The experimentation phase covered two branches: KP and CSP, in order for it to cover both a
decision problem and an optimization problem. This section briefly outlines the experiments
carried out on each branch. Instance information is provided (if relevant), as well as a general
overview of the programming framework. The hyper-heuristic framework is discussed in the
next chapter.

3.3.1 Experiments on the 0/1 KP
To deal with 0/1 KP instances, the hyper-heuristic model was implemented as a separate class
inside the Hyper-heuristic Engine for Reusable Multi-domain Enhanced Search (HERMES)
framework. The implemented generator hyper-heuristic starts with a fixed-size solution of
twelve blocks. Each block represents “a twelfth” of an instance, meaning that roughly, a
twelfth of the items in a problem instance will be packed using the heuristic chosen for the
first block, and so on. An integer division is performed according to the number of items of
the instance and the number of blocks in the hyper-heuristic. The remaining items are added
sequentially from end to start (i.e. backwards). An instance with 20 items and 12 blocks, for
example, will have one item in each block, and an additional item. Fig. 3.1 illustrates this
case.

Figure 3.1: Item distribution for a 20-item knapsack instance with a 12-block long hyper-
heuristic. Items are equally distributed, and remaining items are dropped one by one from end
to start.
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The constructive solver handles hyper-heuristics of different size, since the sequence
structure could be altered during the mutation phase in the learning process. Over time, a
hyper-heuristic may end-up with different distributions of items per block: some blocks could
potentially contain more than one item, and sometimes a block may contain a single item.
These strategies which vary the size of the hyper-heuristics over time generate more inter-
actions between packing heuristics. The packing heuristics used in this research are those
mentioned in Section 2.2.3, in Chapter 2.

The Knapsack Instances

For this research three main datasets were used, which are briefly described in Table 3.1.

Table 3.1: 0/1 Knapsack datasets used.

ID Dataset
Features

Instances Items Capacity

SetA-Train Synthetic 400 50 50
SetA-Test Synthetic 400 50 50

SetB knapPI11-16 600 20 Variable
SetC knapPI11-16 600 50 Variable

The first dataset comprises 800 knapsack problem instances which were synthetically
generated. This dataset is referred to as SETA. SETA is a balanced problem set: 25% of
the dataset is best solved by each of the four packing heuristics described in Section 2.2.3.
Additionally, SETA was split into a learning and a testing subset, both comprising 50% of
the whole dataset, i.e. 400 problem instances each. Each instance in this dataset contains a
knapsack with both capacity c and a set of items n of 50 units.

The second dataset, referred to as SETB, consists of 600 hard instances proposed by
Pisinger in [49]. Instances in this dataset feature a set of items n of 20, but a different capacity
each.

SETC consists on 600 additional hard instances also proposed by Pisinger. All instances
in this dataset have 50 items, with different capacities from one problem instance to another.

Methodology overview for 0/1 KP

The experimentation in the KP branch was conducted in three phases: preliminary, confirma-
tory and complementary. Fig. 3.2 shows a summary of each phase.

Preliminary Testing

In this phase, 30 hyper-heuristics were generated, all of them starting at a fixed length
of twelve blocks. Each hyper-heuristic was trained using a balanced training subset of SETA
(400 instances), as mentioned previously in Section 3.3.1. In order to find an appropriate
number of iterations for the training phase, we conducted 30 runs of 1000 training iterations
each. For each run, a stagnation point (SP) was found. We define an SP as the iteration at
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Figure 3.2: Outline of the methodology used during the 0/1 KP experiments.

which the best solution was first encountered and for which profit showed no improvement
during subsequent iterations. Table 3.2 shows the stagnation points of these 30 runs.

Table 3.2: Stagnation points for the first thirty runs. No better solution could be found during
subsequent iterations.

Run SP Run SP Run SP

1 162 11 46 21 675
2 127 12 51 22 41
3 743 13 114 23 30
4 39 14 38 24 47
5 682 15 18 25 40
6 38 16 317 26 28
7 68 17 56 27 152
8 21 18 146 28 78
9 405 19 176 29 37
10 64 20 30 30 34

These stagnation points were used to calculate a simple average of the iterations. The
average stagnation point found was 150.1, so we rounded down to 150 iterations. A small gap
of 50 extra iterations was added so that the average convergence of training was limited to 200
iterations.

After training, the resulting hyper-heuristics were tested on SETA-TEST. Results were
recorded and compared against solutions yielded by each heuristic run in isolation on the same
set.

Confirmatory Testing
Additional tests were conducted to verify the consistency of the results on the first phase. 30
heuristic sequences were randomly generated. These sequences were all of the same size,
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which was fixed at 16 blocks as it was the average length of the 30 hyper-heuristics in the
previous phase.

The random sequences were then tested on SETA-TEST, and the results stored. A com-
parison was made against both low-level heuristic methods and hyper-heuristics obtained on
the previous phase.

Complementary Testing

In order to test the stability of the hyper-heuristic model, additional testing was con-
ducted using problem instances from the literature.

This phase is pretty similar to phase one: it was comprised of 30, 12-blocks long hyper-
heuristics, each trained for 200 iterations as well. However, this process was repeated two
times. First training with SETA-TRAIN and testing on SETB and SETC, and once again but
with both training and testing done on the new datasets.

Additionally, the evolution history of the 30 hyper-heuristics obtained in the Preliminary
Testing phase was used in a frequency analysis in order to check for heuristic interactions.
For this, 2-block long subsequences were considered for all four packing heuristics, so that
16 different sequences were counted and compared.

Results of all three phases are presented in Chapter 5.

3.3.2 Experiments on CSP
As in the case for KP, the implemented hyper-heuristic model was set up to work with the CSP
solvers and instances available in the HERMES framework. Each hyper-heuristic starts with
a fixed-size, which varies from phase to phase. Back in the KP experiments, each block con-
tained a subset of items to pack using the heuristic assigned to such block. In CSP, each block
contains a subset of decision points in the search tree: pairs of variable/value decisions, so a
heuristic is really a compound heuristic—one part deals with variable selection and another
with value selection. As in the case for KP, decision points are distributed in the sequence
using an integer division: number of items of the instance over the number of blocks in the
hyper-heuristic. Remaining items are added sequentially from end to start (i.e. backwards).

In a similar manner to the previous branch, the hyper-heuristics proposed may vary
in size throughout the training phase due to the presence of length-modifying mutators. It
is expected that these length-modifying mutators generate big changes when solving the CSP
instances, as each decision point frees up subsequent decision points that are constrained while
restricting new ones on each step. Heuristic combinations used for the CSP experimentation
are shown in Table 3.3:

The only value ordering heuristic used for the experimentation phase in this branch was
Min-Conflicts, as is one of the simplest yet more powerful methods for deciding which value
to assign next. Both variable and value ordering heuristics are described in Section 2.1.5, back
in Chapter 2.
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Table 3.3: Compound Heuristics used for the CSP experimentation.

ID Variable selection Value selection

0 Dom Min-C
1 Deg Min-C
2 Dom/Deg Min-C
3 Wdeg Min-C
4 Dom/Wdeg Min-C

The CSP instances

For this research, instances from multiple datasets from the literature were used to train and
test the resulting hyper-heuristics [35]. The datasets used are presented in Table 3.4.

Table 3.4: Datasets used for CSP experimentation. Number of domains, variables and con-
straints are presented as |D|, |X| and |C| respectively.

Dataset Instances Relations |D| |X| |C|

QCP-10a 12 12 11 100 900
QCP-10b 3 11 10 100 900
QCP-15 15 17 16 225 3150
EHI-85 100 (+80) 1 297 (+4120)

The acronym QCP (which can be seen in the name of the datasets) refer to the Quasi-
group Completion Problem. A quasigroup, which is also known as Latin Square, is defined
as an n× n multiplication in which each row and each column is a permutation of the n sym-
bols used. The QCP consists on determining if the n2 − p empty cells can be filled to obtain
a complete Latin Square, and is an NP-Complete problem [26].

As described in Table 3.4, the QCP-10 dataset consists of fifteen instances of 900 con-
straints. Each of the 100 variables in the instance have one of 11 (or 10 for some cases)
domains: the set of available values for the variables in the problem. Instances in QCP-15
contain, on the other hand, over 3000 constraints and 200 variables, showing a sharp increase
in complexity from the QCP-10 set.

The EHI-85 instance set (which name derives from Exceptionally Hard Instances) fea-
tures 100 instances which are all unsolvable. Though the number of relations and constraints
vary from one instance to another, EHI-85 problems feature over 4000 constraints across
almost 300 variables. These instances were originally 3-SAT problems, which can also be
formulated as CSPs (see Section 2.1.1 back in Chapter 2.)

Methodology overview for CSP

As in the KP branch, the experimentation on the CSP focuses on two main analyses: learn-
ing efficiency and heuristic interaction. Since CSP instances studied in this research are de-
cision problems which may have multiple solutions, the comparison was made using both
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consistency checks (CC) and milliseconds. Tests were run on a 64-bit Windows 10 personal
computer, with 8GB of RAM and an Intel® Core™ i5-2500K CPU @ 3.30GHz processor.

The three-phase approach used for KP had to change in order to tackle CSP, as it is a
much more complex problem to handle. The learning efficiency analysis consisted in two se-
quential phases along a parameter adjustment approach: preliminary testing and confirmatory
testing. Fig. 3.3 shows a summary of each phase.

Figure 3.3: Methodology outline for the CSP experiments.

Preliminary Testing

This phase can be broken down into 5 sub-phases, each with its own hyper-heuristic initial
length and training parameters. It is important to note that parameter selection for experiment-
ing with CSP instances could easily become a line of research on its own, as some instances
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may be quite diverse and highly complex. Nevertheless, many setups were considered until
finding a balanced point between training time and solution quality.

The first sub-phase featured four runs of 20 initial blocks each. The model was trained
using 15% of the QCP-10 dataset, and tested on the remaining 85% of the same instance
set. These results were used for time comparison. Results shown that some parameters were
potentially off, so the length of the initial hyper-heuristic was modified. This modification
corresponds to the second sub-phase, in which one single run was conducted using 15-block
sequences.

As the resulting hyper-heuristic yielded results far from those expected, it seemed that
reducing the length of the sequence was detrimental for the learning process for that dataset.
The third sub-phase was conducted using 35-block sequences (up from 15), running four times
using 15% of the EHI-85 dataset as the training set and the remaining 85% as the testing set.

The increase in length resulted in a much slower convergence, as the search space grew
exponentially, so the length of heuristic sequences was reduced to 20 blocks again during the
fourth sub-phase. The training consisted in 15% of the dataset, but this time QCP-15 instances
were used instead. The testing was conducted on the same dataset for this sub-phase.

The final sub-phase of the preliminary testing tried a different learning/testing approach,
as it kept the same running parameters than the previous sub-phase (20-block hyper-heuristics,
1000 training iterations) but featured a learning phase on one third of the instances available
on QCP-10. Testing was performed on QCP-15.

Confirmatory Testing

With a wide variety in the results of the previous phase, it was difficult to settle with a single
best way to tackle on the learning problem in CSPs. However, some decisions were made
taking into the account many features and findings on the previous phase. 20-block sequences
seemed appropriate, while the partition of the training and testing subsets needed a tweak.
Again, one third of a dataset was used to train a single hyper-heuristic, however the datasets
were exchanged: training was now conducted on QCP-15 and testing was done on QCP-10.
This change was necessary, as QCP-15 presents lots of instances which are far more complex
than those in QCP-10, so we expected better results if using hard instances for the learning
process.

An additional phase was conducted during the confirmatory testing, which was prepar-
ing the input data for the frequency analysis of the heuristic sequences. As well as in the KP
branch, simple 2-digit sequences were analyzed using the evolution history of all 18 hyper-
heuristics on this phase.

The results of these two experimentation phases are presented in Chapter 6. It is im-
portant to note that though 32 runs is a decent number of observations, additional sampling
would be needed to fully determine performance issues and to propose improvements for the
learning model. For a more detailed description of proposed future work, see Chapter 7.

Run Representation

Since the preliminary phase contained many different parameter adjustments, minute
changes between each sub-phase were difficult to locate and reference. For this reason, each
run was labeled with a human-readable label depending on the seed used to generate the subset
of training instances. Table 3.5 show the hyper-heuristic method and their respective IDs.
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Table 3.5: Hyper-heuristic IDs and labels.

ID Seed Label ID Seed Label

1 1101813 Surprised Man 17 41529 BLSting
2 18523 Tower 18 75263 BRSting
3 71593 X 19 18523 Tower
4 74123 BLCorner 20 74852 q
5 74123 BLCorner 21 85296 p
6 74123 BLCorner 22 748263 Bracket
7 71593 X 23 48526 Cross
8 18523 Tower 24 71593 X
9 12963 BRCorner 25 74182963 Square

10 48526 Cross 26 85263 b
11 718293 2OHBars 27 7415963 H
12 6666 Beast 28 741963 2OVBars
13 415263 2HBars 29 741963 2OVBars
14 741852 2VBars 30 745296 UpTrident
15 18596 TRSting 31 41852 d
16 74853 TLSting 32 418563 DownTrident

A visual representation of the seed was needed in order to understand what happened
and at which level of the experimentation process. For this, a “run chart” was generated,
which can be reviewed in Appendix B, along with an explanation on how to read it.

3.4 Summary
This chapter reviewed the methodology used throughout this research, which can be broadly
separated into three phases. Phase 1 considered the background and theoretical framework
construction. Phase 2 consisted in generating the research questions which fueled the inves-
tigation and conformed its justification. Phase 3 comprised many experiments in two differ-
ent branches: KP and CSP. The KP branch of the experimentation phase consisted in three
main sub-phases—preliminary, complementary and confirmatory testing—where the both the
learning efficiency of the model and heuristic interaction were analyzed. The CSP branch of
the experimentation consisted in 32 experiments distributed in two phases: preliminary and
confirmatory. Preliminary results considered five sub-phases, many of which were used for
parameter adjustment. The confirmatory sub-phase comprised 18 hyper-heuristics and was
used for both learning efficiency analysis as well as the heuristic interaction frequency analy-
sis. KP and CSP results can be found in Chapters 5 and 6 respectively.



Chapter 4

Framework Description

In this chapter, the hyper-heuristic learning model is described as well as the rationale behind
it. An extensive description of the mutation operators used by the model is presented along
with graphical examples on how the algorithm works.

4.1 Hyper-heuristic Model
The hyper-heuristic model used in this research is a selection hyper-heuristic with a learning
mechanism based on a variant of the (1+1) Evolutionary Algorithm originally proposed by
Droste et al. in [18]. The (1+1) algorithm works by generating a random individual—a set of
features—which is cloned and then mutated over time. In this sense, the hyper-heuristic is an
ordered set of features—a sequence of heuristics. An abstract representation of an individual
can be found in Fig. 4.1, which shows a sequence of heuristics, each enclosed in a block.

Figure 4.1: Abstract representation of an individual as a set of heuristics. Each feature is
enclosed in a block.

The mutated clone is compared against its parent and the model preserves the best of the
two individuals. If the two individuals are equally fit (objective function-wise), then the mu-
tated clone is preferred. Mutation in the (1+1) EA algorithm uses a single mutation operator
which flips each feature with a probability of 1/n, where n is the number of heuristics in an
individual.

The modified version used in this researched was first presented by Lehre and Özcan
in [36]. This variant chooses one of m mutation operators based on a probability distribution
p̄. The pseudo-code of this learning mechanism is presented in Algorithm 2, and though it is
shown as a maximization problem, the algorithm is able to operate on minimization problems
as well.

30
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Algorithm 2 Learning phase of the Hyper-heuristic

1 s ∼ UNIF({0, 1, . . . , h}n)
2 while termination criteria is not satisfied do
3 op ∼ Dp̄(OP1,OP2, . . . ,OPm)
4 s′ ← op(s)
5 if f(s′) ≥ f(s) then
6 s← s′

7 end if
8 end while

As described in Section 2.5 in Chapter 2, this model works in a similar fashion to the
well-known hill climbing technique, exploring the surrounding search space looking for a
better solution but with an additional stochastic component added during the mutation phase.
If the fitness of the new proposed solution is greater or equal (for maximization, and less or
equal for minimization) than that of the previous one, then the solution is replaced and the
searching process continues.

A UML sequence diagram of the model is presented in Fig. 4.2. The hyper-heuristic
component interacts with the heuristic space to select a mutation operator which is then ap-
plied to the proposed solution. The solution is tested on the problem set (solution space) and
a fitness level is obtained. Any hyper-heuristic which is not worse than the current candidate
is accepted, and the process starts anew until a number of iterations or a stopping criteria is
met.

A brief explanation on how to interpret a UML sequence diagram can be found in Ap-
pendix A.

4.2 Mutation Operators
In order to exploit the proposed solution, an individual must undergo through a mutation pro-
cess. This mutation process alters the structure of the individual and changes its features, so
that a new set of features is generated and evaluated. For the model used in this disserta-
tion different mutation operators were used. Mutators can be grouped into different classes
according to their effects. Mainly, three broad groups were proposed:

• Length modifiers. Those mutators that add or remove blocks to the set of heuristics.

• Feature modifiers. Mutators which replace the heuristic in a block by another heuristic.

• Neighborhood modifiers Mutators affected by adjacent blocks.

These groups are not orthogonal, since there are mutation operators which modify the
length of the set of heuristics according to their neighbors, for example. Eight mutators were
used in this research, and are described throughout this section.
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Figure 4.2: UML sequence diagram of the proposed Hyper-heuristic model. HHM stands for
Hyper-heuristic model, MUT for Mutators, HEUR for Heuristics and SOL for Solution space.

4.2.1 Length Modifiers
Length modifiers are perhaps the most disruptive of the mutation operators, since they alter
the whole feature set by inserting or removing blocks at random positions.

• ADDBLOCK. This operator inserts a random feature at a randomly selected position.

• REMOVEBLOCK. This operator selects a random block and removes it from the hyper-
heuristic.

Fig. 4.3 and 4.4 illustrate the behavior of ADDBLOCK and REMOVEBLOCK respec-
tively.

4.2.2 Feature Modifiers
Feature mutators work by altering the blocks of a hyper-heuristic, directly changing the values
instead of its structure.

• FLIPONEBLOCK. This operator takes a randomly selected block and assigns a new
random heuristic from those heuristics available. There is a 1 out of h probability of
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Figure 4.3: The ADDBLOCK mutation operator adds a block with a random feature at a
randomly selected position, increasing the length of the hyper-heuristic sequence.

Figure 4.4: The REMOVEBLOCK mutator randomly selects a block in the hyper-heuristic and
removes it, reducing its length.

the feature being the same as it was before, resulting in an unchanged sequence of
heuristics.

• FLIPTWOBLOCKS. It works in the same fashion as FLIPONEBLOCK but choosing two
blocks at random, one after the other. Because of this, there is a small chance of a block
being overwritten twice, and even a smaller chance of an unchanged individual.

• SWAPBLOCKS. This operator swaps the values for two randomly selected blocks.
Again, there is a possibility that the two selected blocks share the same value, so that
swapping their positions has no effect.

As there may be situations where an individual remains unchanged after the mutation
phase, these operators are considered less disruptive than length-modifying mutators. Fig. 4.5,
4.6 and 4.7 illustrate the process of FLIPONEBLOCK, FLIPTWOBLOCKS and SWAPBLOCKS

respectively.

4.2.3 Neighborhood Modifiers
The neighborhood mutator group comprises neighborhood variants of previously described
mutators. The neighborhood of a block is comprised by the two adjacent blocks. The hyper-
heuristic sequences in this dissertation are considered circular when applying neighborhood
operators. This means that if the block chosen to be modified corresponds to an end of the
sequence, the other end is taken as its neighbor.
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Figure 4.5: The FLIPONEBLOCK mutator changes the value of a block. There is a chance of
the new value being the same as it was before.

Figure 4.6: The FLIPTWOBLOCKS mutation operator. This mutator applies FLIPONEBLOCK

twice. Though the possibility of an unchanged individual exists, it is not that common.
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Figure 4.7: The SWAPBLOCKS mutator randomly selects two blocks and then swaps their
values. Depending on the distribution of the features in an individual, there may be a high
chance of an unchanged hyper-heuristic.

• ADDBLOCKNEIGH. This mutator selects a random location in the hyper-heuristic and
inserts a block based on its neighborhood, i.e, the available heuristics to choose from
are decided by the values of the neighbors.

• FLIPONEBLOCKNEIGH. This is a neighborhood variant of FLIPONEBLOCK, in which
the randomly chosen block is replaced by one of its neighbors.

• FLIPTWOBLOCKSNEIGH. This mutation operator acts like FLIPTWOBLOCKS, but
heuristics are chosen randomly from the neighborhood of each selected block.

Assuming that blocks that are in the same neighborhood represent points in the search
space which are close from each other, mutation from neighborhood operators is expected
to be less disruptive for the individual. Again, as in the feature-modifying mutators, some
neighborhood operators have a small chance of not altering the hyper-heuristic. Fig. 4.8 shows
how the ADDBLOCKNEIGH operator works. Fig. 4.9 and 4.10 present the mutation processes
of FLIPONEBLOCKNEIGH and FLIPTWOBLOCKSNEIGH respectively. Fig. 4.11 illustrates
the idea of a circular hyper-heuristic.

Figure 4.8: The ADDBLOCKNEIGH operator inserts a block at a randomly chosen position.
The pool of available values for the new block is limited to the values of the adjacent blocks.
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Figure 4.9: A FLIPONEBLOCKNEIGH example.

Figure 4.10: An example of the FLIPTWOBLOCKSNEIGH process.

Figure 4.11: A case of a circular sequence for the FLIPONEBLOCKNEIGH process. Notice
how the neighborhood include both ends of the hyper-heuristic.
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At each iteration, one of these operators is randomly selected and applied to the can-
didate solution during the mutation phase. This mutation process may result in a different
sequence of features, which in this study represents a sequence of heuristics to apply to the
problem instance being solved. Thus, each block can be seen as a subproblem where the
chosen heuristic h will be applied.

Both the FLIPONEBLOCK and FLIPTWOBLOCKS operators were previously used in [36].
The use of ADDBLOCK, SWAPBLOCKS and REMOVEBLOCKS can be found in [28], [29] and
[54]. Having a wide range of mutation operators on different disruptive levels adds several
mechanics to the hyper-heuristic for avoiding stagnation on local optima during the learning
phase.

4.3 Summary
In this chapter we have explained the hyper-heuristic model, its inspiration and its learning
process. The hyper-heuristic learning model was based on the (1+1) Evolutionary Algorithm,
which clones an individual (a sequence of blocks, each containing a feature) and mutates it. If
the proposed solution (mutated individual) performs better than its predecessor, then it is kept
for the next generation. The process is then repeated until a stopping criteria is met.

The mutation phase of the model is accelerated using multiple mutation operators. These
mutators can be broadly classified into three different groups, according to how much they
alter the solution: length-modifying, feature-modifying and neighborhood mutators. Modify-
ing the structure of the hyper-heuristic is more disruptive than altering their features, which in
turn is more disruptive than modifying a block depending on the adjacent features. Graphical
examples of the mutation operators can be found throughout the chapter.

Chapter 5 details the results of the experimentation on KP. Results on CSP are included
in Chapter 6. Additional implementation details and framework modifications are included in
the corresponding chapters.



Chapter 5

0/1 KP Analysis

This chapter discusses the results of the KP branch of the experimentation phase. In general,
two aspects of the hyper-heuristic method proposed were analyzed: the efficiency of the learn-
ing method and simple interaction between packing operators. Section 5.1, 5.2 and 5.3 detail
the results of the learning method analysis, while Section 5.4 describes heuristic interaction
and sequence behavior.

5.1 Phase I. Performance against Traditional Packing Op-
erators

A summary of the profit of the simple packing operators on SETA-TEST, as well as the profit
of the hyper-heuristic methods, is presented in Table 5.1. Three hyper-heuristic methods were
considered: the best, median and worst cases, which are referred to as Best-HH, Med-HH
and Worst-HH respectively. Additionally the number of instances per rank, per method is
reported. The Rank column shows the standing of a given method against the performance
of all other methods tested in isolation on SETA-TEST. This ranking considers nine ranks
(from R1 to R5, using decimal ranks to describe a tie for a given rank) and compares five
methods: four low-level packing operators against the best hyper-heuristic method, and each
of the hyper-heuristic cases versus all low-level operators.

A quick glance to the table reveals that the best hyper-heuristic method seems to be no
significantly better than any of the low-level operators. In fact, the total profit of the best
hyper-heuristic is exactly the same as the best single heuristic shown in Table 5.1, MAX-PW.
This behavior shows that the hyper-heuristic method was able to learn from the best traditional
operator available using the training instances, but could not find any improvement over the
best traditional operator solution.

In order to understand these results, additional experiments were carried out. For each
instance on the dataset, a ranking was obtained. The performance ladder including the whole
SETA-TEST is also presented in Table 5.1. The ranking exhibits that the best hyper-heuristic
method imitated the MAX-PW behavior. This may be due to the fact that MAX-PW operates
appropriately even in cases when it is not the best heuristic for a given instance. However,
looking at the median hyper-heuristic method column reveals that this high-level method ob-
tained a better result in 7 out of the 400 instances available in the set. Therefore, it is possible

38



CHAPTER 5. 0/1 KP ANALYSIS 39

Table 5.1: Summary of experiments for Phase 1a. The method with the highest Total Profit
is highlighted. Non-integer ranks refer to a tie for a given rank, e.g. R1.5 refers to a tie for
Rank 1.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-HH Med-HH Worst-HH

R1 86 100 0 100 0 7 0
R1.5 0 0 111 0 111 103 109
R2 2 1 2 0 2 25 13
R2.5 1 0 285 1 285 258 274
R3 11 21 1 79 1 6 3
R3.5 0 1 1 1 1 1 1
R4 18 195 0 183 0 0 0
R4.5 0 0 0 0 0 0 0
R5 282 82 0 36 0 0 0

Total
Profit 241081 343872 467145 376148 467145 467103 466711

to beat MAX-PW under some circumstances.
To explore different scenarios, this experiment was repeated four additional times using

a random sample for the training phase: twice using 60% of the training set, once with 30%
and finally once 15%. The test set remained intact.

The results confirmed the notion that the hyper-heuristic model can beat the best simple
heuristic under some circumstances. On the second run, using only a random sample of 60%
of the original training set, the total profit of the hyper-heuristic was higher that that of the
MAX-PW operator. The results of the second run can be observed in Table 5.2, where the
total profit and the corresponding rankings per method are reported. Additionally, Fig. 5.1
illustrates the performance of the best hyper-heuristic compared against the best and worst
methods available for each problem instance on SETA-TEST.

As the results of the run for Phase 1b suggest, balancing the training set seems to be
detrimental for the efficiency of the model, since it is a sequence based-method that accepts
any solution which is not worse than the actual state. As shown in Table 5.2, the total profit
of the best hyper-heuristic model for this run was better than that obtained by MAX-PW on
Table 5.1. Although slight, improvement over a conventional method seems to be achievable
when using the hyper-heuristic approach. This improvement is very likely to rise if solving
large number of problem instances, or by adding more operators to choose from.

Since there exists room for improvement over the best heuristic analyzed, we decided to
test further. The experiments were repeated as described in Section 3.3.1, back in Chapter 4:
30 instances of 12 initial blocks, but removing MAX-PW from the available operators to
choose from during training. These results are shown in Table 5.3 and in a boxplot available
in Fig. 5.2. Each box in the boxplot represents a series. Bold colored lines represent the
statistic mean of each sample. Crosses are used to represent outliers: data between 1.5 and 3
times the interquartile range (IQR). The IQR is the actual height of the box. A circle is used
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Table 5.2: Summary of experiments for Phase 1b. The method with the highest Total Profit
is highlighted. As opposed to Table 5.1, these hyper-heuristics were trained using a random
sample of 60% of the training set.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-HH Med-HH Worst-HH

R1 86 100 5 95 0 0 0
R1.5 0 0 106 5 111 111 109
R2 2 1 2 0 7 2 13
R2.5 1 0 280 1 280 285 274
R3 11 21 6 79 1 1 3
R3.5 0 1 1 1 1 1 1
R4 18 195 0 183 0 0 0
R4.5 0 0 0 0 0 0 0
R5 282 82 0 36 0 0 0

Total
Profit 241081 343872 467145 376148 467182 467145 466711
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Figure 5.1: Performance of the best hyper-heuristic method, compared against oracle and
worst methods available for each problem instance. These results correspond to Phase 1b, i.e.
training with 60% of SETA-TRAIN and testing on all SETA-TEST.
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to denote an abnormally large or small datum, lying outside the range described for crosses.

Table 5.3: Summary of experiments for Phase 1c. The method with the highest Total Profit is
highlighted. The MAX-PW operator was not available during the learning during phase for
this run.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-HH Med-HH Worst-HH

R1 85 99 111 97 0 1 1
R1.5 3 1 2 3 5 5 3
R2 12 1 238 2 129 121 116
R2.5 0 0 13 1 12 13 11
R3 1 40 36 105 187 207 210
R3.5 0 1 0 17 16 4 7
R4 17 178 0 141 37 41 44
R4.5 0 1 0 9 10 3 3
R5 282 79 0 25 4 5 5

Total
Profit 241081 343872 467145 376148 397373 395586 391940

Comparing the total profit of the best hyper-heuristic method in Table 5.3 against the
total profit of MAX-PW, it is seen that there was some profit loss due to the absence of the
MAX-PW heuristic on the set of available heuristics to choose from during the learning phase.
However, all three hyper-heuristics (best, median and worst cases) obtained second rank in
terms of total profit. When comparing the results of the best hyper-heuristic case against
those obtained from the available operators, the profit rises sharply, showing an improvement
of nearly 6%, 16% and over 64% over the MIN-W, MAX-P and DEF operators respectively.
This result exhibits that the model is capable of learning in harsh conditions, and thus obtain
better results when no appropriate heuristic is known.

5.2 Phase II. Performance against Random Sequences of
Operators

The second Phase of the experiments looks to answer a common interrogative: is learning
really worthwhile in this problem? For this, SETA-TEST was solved using 30 randomly
generated heuristic sequences. Each heuristic sequence was 16-blocks long, and for each
block, a low-level operator was uniformly chosen at random. Again, three scenarios were
considered—best, median and worst cases—and compared against the four heuristics defined.
Table 5.4 presents a summary of the results of this experimentation phase.

As Table 5.4 shows, the best of the thirty random sequences did not beat the best of
the low-level operators. There is actually a difference of about 7% of the profit obtained by
the best random sequence. Although this difference may seem small, it can be considered a
‘lucky hit’. Looking at the median random sequence instead, shows a difference that rises
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Figure 5.2: Boxplot of Phase 1c. The median of the best, expected and worst cases of the
hyper-heuristic outperformed all heuristics used for its training. However, it could not obtain
better results than MAX-PW, which median is shown in blue.

Table 5.4: Summary of experiments for Phase 2. The method with the highest Total Profit is
highlighted. Best, median and worst cases of the random heuristic sequences are reported in
the Best-Rnd, Med-Rnd and Worst-Rnd columns respectively.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-Rnd Med-Rnd Worst-Rnd

R1 80 100 102 98 1 0 0
R1.5 5 0 9 2 16 20 84
R2 6 1 127 0 114 66 2
R2.5 1 0 140 2 139 6 14
R3 8 25 21 84 118 140 0
R3.5 0 1 1 1 1 77 18
R4 18 191 0 177 11 72 0
R4.5 0 0 0 0 0 16 282
R5 282 82 0 36 0 3 0

Total
Profit 241081 343872 467145 376148 436393 361284 241025
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considerably to nearly 30%. The worst case exhibits a profit difference of almost 94%. And
since the median result holds vital importance—for its closeness to the expected behavior
when solving the problem completely at random—it then seems worthwhile to go with a
learning method for this problem.

5.3 Phase III. Performance on Hard Problem Instances
Phase 3 of the experimentation focused on solving hard KP instances. As opposed to Phase
1, instances on this phase feature a variable capacity. Results for Phase 3a are presented in
Table 5.5.

Table 5.5: Summary of experiments for Phase 3a. The method with the highest Total Profit is
highlighted. All 30 runs in this phase trained on SETA-TRAIN and tested on SETB.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-HH Med-HH Worst-HH

R1 39 143 50 11 77 84 62
R1.5 20 30 119 12 103 60 47
R2 77 68 167 106 166 116 101
R2.5 19 8 93 40 62 58 62
R3 88 53 58 66 76 150 148
R3.5 18 5 64 29 36 23 34
R4 266 43 28 90 52 94 121
R4.5 13 7 15 17 8 3 5
R5 60 243 6 229 20 12 20

Total
Profit 3804271 3724588 4039708 3867345 4031981 3958061 3905734

The model was trained using SETA-TRAIN for this phase, and was later tested on SETB.
The overall profit of the hyper-heuristic ranked second in all three cases: best, median and
worst cases were all behind MAX-PW. Since the training was handled in the same manner as
in Phase 1a and results were somewhat similar, an additional phase was conducted.

Phase 3b comprises another 30 runs, but this time training was performed on 60% of
SETB. Resulting hyper-heuristics were then tested on the remaining 40% of SETB. The results
for this phase are shown in Table 5.6. Fig. 5.3 illustrates the performance of the best hyper-
heuristic per instance, compared against both the best and worst available methods for these
problem instances.

As opposed to the results of Phase 1b, Fig. 5.3 shows a sharp reduction of the gap
between the oracle (best method available for a single instance, marked with blue circle) and
the best hyper-heuristic method (marked with a red dotted line). This behavior is also present
when facing problem instances of different number of items, as shown in the next phase.

To confirm the results obtained using the hard problem instances of 20 items from
Pisinger, an additional phase was conducted. This phase, which we refer to as Phase 3c,
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Figure 5.3: Performance of the best hyper-heuristic method per instance, compared against
oracle and worst methods available.

Table 5.6: Summary of experiments for Phase 3b. The method with the highest Total Profit
is highlighted. As opposed to Phase 3a, hyper-heuristics were trained and tested using hard
problem instances from SETB.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-HH Med-HH Worst-HH

R1 16 54 4 3 47 35 48
R1.5 3 4 57 9 53 55 49
R2 27 34 57 36 63 77 62
R2.5 7 3 48 20 26 27 18
R3 43 20 17 20 16 14 19
R3.5 11 4 36 14 19 19 17
R4 105 17 13 31 14 10 22
R4.5 6 4 7 10 1 1 1
R5 22 100 1 97 1 2 4

Total
Profit 1584007 1540100 1673387 1600015 1681403 1681127 1678375
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encompassed 30 additional runs but both training and testing were conducted on SETC. The
results for this phase can be observed in Table 5.7. Fig. 5.4 presents the performance of
the best hyper-heuristic method, the oracle and the worst method available for each problem
instance in SETC.

Table 5.7: Summary of experiments for Phase 3c. The method with the highest Total Profit
is highlighted. As opposed to Phase 3a and 3b, hyper-heuristics were trained and tested using
hard problem instances from SETC.

Low-level heuristics Hyper-heuristics

Rank Def Max-P Max-PW Min-W Best-HH Med-HH Worst-HH

R1 11 24 4 15 23 18 24
R1.5 1 5 97 3 94 96 83
R2 18 30 68 39 72 76 76
R2.5 1 1 36 10 26 27 28
R3 31 32 8 49 6 5 6
R3.5 2 2 14 6 10 11 11
R4 143 35 6 29 3 1 5
R4.5 1 1 6 0 6 6 7
R5 32 110 1 89 0 0 0

Total
Profit 3752072 3631322 4046715 3930092 4052501 4052039 4045794

Phase 3c confirmed the results of the previous phases: the learning method seems to be
quite stable. Despite the fact that the set comprised instances with different features, all three
cases of the hyper-heuristic beat the best operator (MAX-PW) in isolation. Additionally, set-
ting a good training set seems to impact the efficiency of the hyper-heuristic model. Training
done on SETA-TRAIN seemed to negatively affect the results, as seen on both Phases 1a and
3a. It is important to note that SETA—both train and testing subsets—were balanced and
synthetically made: 25% of the problem instances were designed to maximize a single low-
level heuristic. This pattern was repeated for all low levels heuristic throughout this set. On
the other hand, hard problem instances from SETB and SETC were randomly sampled (with-
out replacement) using three different seeds. This training scheme is more representative of
real-life applications, where often no balanced or ideal conditions are met.

5.4 Analysis of Packing Operators Sequences
This section focuses on the analysis of heuristic sequences for solving the binary Knapsack
Problem. Data was collected from the results of the first 30 hyper-heuristics from the Prelim-
inary Testing phase, trained for 200 iterations on SETA-TRAIN.

The objective of this small experiment was to try to understand what was happening be-
hind the evolutionary curtain of the hyper-heuristic. We analyzed the frequency of appearance
of simple heuristic sequences during the evolution of each hyper-heuristic.
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Figure 5.4: Performance of the best hyper-heuristic method per instance, compared against
oracle and worst methods available. These problem instances belong to SETC, which are all
hard instances of 50 items each.
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At each iteration training process, the new proposed individual was stored along its profit
in a comma separated value. For each run (200 iterations per hyper-heuristic), the frequency of
all two-segment heuristic sequences was recorded. Table 5.8 shows the data obtained during
this phase.

Table 5.8: Frequency of two-segment low-level heuristic sequences for the Preliminary Test-
ing phase on KP

Run/Sequence 00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

1 36 24 32 44 73 171 104 84 35 237 259 56 26 38 41 115
2 106 79 72 136 127 65 126 101 124 170 752 330 36 218 302 250
3 120 63 26 139 86 160 148 97 117 248 372 8 52 103 154 149
4 65 41 69 68 118 83 58 39 83 25 492 247 37 196 130 110
5 308 139 63 49 157 87 55 31 135 91 614 28 53 14 64 40
6 96 101 58 89 120 187 89 129 70 222 483 92 58 140 89 142
7 93 115 55 14 65 278 131 175 148 24 508 312 25 214 219 346
8 189 33 176 27 93 82 176 28 102 236 588 186 105 28 99 83
9 18 55 31 55 44 260 176 175 77 261 535 112 15 113 96 136

10 161 103 108 48 107 92 74 28 154 90 827 165 82 105 36 117
11 39 51 4 21 47 210 89 165 8 278 322 10 52 93 30 41
12 192 46 164 28 112 111 86 65 182 179 526 87 34 54 78 30
13 122 82 103 59 131 224 149 57 180 247 559 29 35 26 50 48
14 83 93 59 51 86 134 163 177 139 284 1046 279 93 88 303 105
15 76 85 68 53 131 423 195 147 63 317 795 177 42 183 153 134
16 97 132 79 21 161 346 274 47 155 336 531 75 4 50 162 25
17 74 35 63 39 6 18 60 11 117 60 761 157 45 8 181 45
18 89 75 22 86 89 106 69 143 38 223 202 20 79 43 72 173
19 371 64 130 118 250 119 24 38 22 323 445 21 95 14 68 69
20 31 29 113 39 110 302 217 70 37 437 572 21 35 34 61 49
21 125 10 92 85 77 174 145 193 74 180 523 215 93 190 305 216
22 48 50 77 31 86 191 124 113 96 276 527 103 50 81 127 160
23 2 19 42 46 51 101 102 267 20 227 474 149 38 177 183 304
24 49 124 0 27 92 391 159 177 43 275 717 32 30 161 87 154
25 104 16 50 25 91 115 93 99 36 229 277 46 33 47 48 82
26 86 104 72 55 104 287 176 86 125 234 461 61 45 69 101 92
27 71 115 97 51 141 274 174 135 53 195 678 275 77 157 185 116
28 367 178 83 58 141 258 123 173 106 238 742 69 116 108 44 93
29 293 36 46 182 150 41 52 127 15 188 412 83 128 83 46 262
30 157 44 122 93 28 24 98 84 142 76 378 185 224 71 128 154

Using the ordering in which they were presented back in Chapter 2, the numbers 0, 1,
2 and 3 correspond to the DEFAULT, MAX-P, MAX-PW and MIN-W operators respectively.
Thus, sequence 13 is a short label for the MAX-P–MIN-W heuristic sequence. Numbers in
bold font represent the most common heuristic sequence for that run. This information is also
presented as a boxplot in Fig. 5.5.

As seen on the plot, a pure heuristic sequence was dominant: pure MAX-PW was the
most common sequence amongst the hyper-heuristics. Pure heuristic sequences seem to have
been preferred by the hyper-heuristics, especially the pure MAX-P sequence.

At a glance, the box plot reveals that the most common heuristic interaction is just using
MAX-PW. On the contrary, sequences 30 and 03 were the least frequent: mixing DEF and
MIN-W seems like a bad idea from an evolutionary perspective. The same can be observed
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Figure 5.5: Boxplot of heuristic sequences.
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for sequences 01 and 10 (DEF–MAX-PW). The mean of each sample was quite similar. In
fact, by looking at the notches of all boxes, the means are not significantly different, except for
MAX-PW–MAX-P (21) and pure MAX-PW (22). Different mixtures of heuristics do have an
impact on how frequently the evolutionary algorithm selects them.

However, the frequency of a heuristic interaction alone cannot guarantee that a single
packing heuristic is the best operator for all instances. Since the knapsack has limited capacity
and not all items in the instance are supposed to fit in, heuristic sequences at the end of longer
hyper-heuristics do not impact on the profit but were, nevertheless, taken into account for
statistical purposes in this experiment. For a human, switching heuristics at certain decisions
points may seem obvious. An interesting example would be a situation where only two items
are left, and the knapsack has capacity for any of them, but not both. The best outcome would
be to apply MAX-P and not MAX-PW in this case. A small detail, obvious for us humans
was, to our surprise, learned by the proposed model. That is why the sequence MAX-PW–
MAX-P has the second most frequent packing heuristic sequence in this examination. This
suggests that, after all, there is something to learn from the heuristic interaction, even if it may
be unnoticed at first glance.

5.5 Summary
This chapter reviewed the results of the KP branch of experimentation.

Preliminary results shown that the model could potentially outperform standalone heuris-
tics, but it needed a parameter adjustment. Using the new parameters, hyper-heuristics beat
single operators, both in synthetically generated instances and in hard instances from the lit-
erature.

Another interesting feature was the capability of the model to learn from heuristics that
do not perform well on their own. Removing the best heuristic from the training examples,
the hyper-heuristic model learned to combine low-level operators which resulted in a solution
that outperformed its components but not the best heuristic. This behavior showed that the
method is able to find decent results even when no good heuristic is known.

Additionally, a frequency analysis was conducted to identify heuristic interaction during
the training phase of hyper-heuristics in the preliminary tests. Results shown that the MAX-
PW heuristic is the one most frequently used in training. However, certain combinations like
MAX-PW–MAX-P had a significant edge over many other heuristic interactions, revealing
that using the best heuristic all the time does not guarantee maximal profit.

Next chapter presents the experimentation on the CSP.



Chapter 6

CSP Analysis

This chapter describes the results of the CSP branch of the experimentation phase. As with
KP, two aspects of the hyper-heuristic method were analyzed: learning efficiency and simple
interaction between variable and value heuristics.

6.1 Phase I. Preliminary Results
As mentioned in Section 3.3.2, back in Chapter 4, the preliminary testing phase underwent
many parameter adjustments throughout the five sub-phases it encompassed. To have a better
perspective, the results of each sub-phase is presented in this section in the form of a table. A
summary of the standalone heuristics performance is presented in Table 6.1, which serves as
a reference for those results obtained during Phase II and for the case of the QCP instances in
Phase I.

At a glance, the DOM heuristic shows an edge over the rest of the variable selection
operators for this dataset.

The first comparison was performed against results of the first sub-phase, which featured
20-block initial sequences and trained using 15% of the dataset. These results are presented
in Table 6.2.

Sub-phase 1 shows interesting results. The first hyper-heuristic, The Surprised Man
(see Run Representation in Section 3.3.2, back in Chapter 3), performed better than the best
heuristic alone on QCP-10, as the average consistency checks for the set was found to be
around 916,278 checks (as opposed to 992,757 for DOM in Table 6.1). However, this could
have been a lucky hit: hyper-heuristics The X and BLCorner featured an average of over 2
million consistency checks, which is way worse than the best standalone heuristic.

Sub-phase 2 consisted on a single run using a different initial length: 15 blocks and
training using 15% of the QCP-10 instance set. The results were quite impressive, as the
hyper-heuristic model could not solve any instance in the set. The testing was transported
to the EHI-85 set. Table 6.3 shows the first 15 rows of the full results table: both time and
consistency checks for the whole dataset.

Sub-phase 3 shown that longer hyper-heuristics yielded good results, however the in-
stance set itself provided little information to learn: the model learned what it was able to
learn in 1000 iterations in 20 minutes, as opposed as the training in QCP where training was

50
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Table 6.1: Performance of standalone heuristics on the QCP-10 instance set. Numbers dis-
played correspond to the number of consistency checks per method, per instance.

Instance DOM DEG DOMDEG WDEG DOMWDEG

qcp-10-67-0 ext 68,177 8,558,850 6,220,676 10,738,844 7,747,438
qcp-10-67-10 ext 6,092,045 11,558,010 8,279,166 10,039,969 8,170,371
qcp-10-67-11 ext 126,634 11,566,901 8,101,622 11,648,799 8,717,308
qcp-10-67-12 ext 5,980,554 11,949,454 8,582,245 11,217,141 7,732,059
qcp-10-67-13 ext 63,749 11,729,419 9,155,159 11,109,788 8,517,710
qcp-10-67-14 ext 589,287 12,048,994 10,720,560 10,799,745 1,494,534
qcp-10-67-1 ext 67,910 11,898,715 267,973 11,380,221 412,486
qcp-10-67-2 ext 68,677 11,927,199 7,672,672 10,506,197 8,858,486
qcp-10-67-3 ext 67,973 11,805,366 8,290,158 10,115,238 2,325,723
qcp-10-67-4 ext 67,760 11,985,380 388,541 11,092,886 248,078
qcp-10-67-5 ext 69,391 10,975,728 8,064,617 10,213,332 517,341
qcp-10-67-6 ext 67,188 11,806,112 875,673 10,478,362 7,688,753
qcp-10-67-7 ext 67,107 11,826,825 442,408 11,246,398 1,297,216
qcp-10-67-8 ext 204,075 11,571,924 8,092,609 10,609,334 1,630,728
qcp-10-67-9 ext 1,290,825 11,895,018 611,457 10,921,404 8,077,074

Sum 14,891,352 173,103,895 85,765,536 162,117,658 73,435,305
Average 992,757 11,540,260 5,717,702 10,807,844 4,895,687

Table 6.2: Performance of hyper-heuristics in sub-phase 1 of preliminary testing. Time values
are shown in milliseconds.

Instance
01-Surprised Man (1101813) 02-Tower (18523) 03-X (71593) 04-BLCorner (74123)

CCs Time CCs Time CCs Time CCs Time

qcp-10-67-0 ext.xml 67,860 31 71,648 31 140,699 78 62,743 15
qcp-10-67-10 ext.xml 4,007,991 2,012 892,100 405 4,662,315 2,012 4,597,834 2,012
qcp-10-67-11 ext.xml 126,489 62 3,754,361 2,012 4,426,009 2,012 4,227,673 2,012
qcp-10-67-12 ext.xml 3,950,856 2,012 4,300,886 2,012 4,605,801 2,012 4,470,447 2,012
qcp-10-67-13 ext.xml 63,645 31 63,325 31 4,347,700 2,012 4,270,416 2,012
qcp-10-67-14 ext.xml 458,338 202 115,028 62 4,446,370 2,012 4,242,439 2,012
qcp-10-67-1 ext.xml 67,880 46 71,551 46 711,405 390 248,114 109
qcp-10-67-2 ext.xml 68,481 46 68,905 46 66,202 31 64,963 46
qcp-10-67-3 ext.xml 67,775 31 66,530 31 4,054,372 2,012 3,979,826 2,012
qcp-10-67-4 ext.xml 67,760 46 67,277 46 4,113,710 2,012 79,871 46
qcp-10-67-5 ext.xml 73,116 46 67,660 31 888,346 468 68,449 46
qcp-10-67-6 ext.xml 67,112 46 67,523 31 80,592 46 63,395 31
qcp-10-67-7 ext.xml 67,651 31 66,853 31 89,848 46 92,503 46
qcp-10-67-8 ext.xml 3,395,342 2,012 3,591,625 2,012 4,152,309 2,012 3,886,594 1,981
qcp-10-67-9 ext.xml 1,193,879 670 838,952 468 558,151 265 3,604,377 2,012

Sum 13,744,175 7,324 14,104,224 7,295 37,343,829 17,420 33,959,644 16,404
Average 916,278.33 488.27 940,281.60 486.33 2,489,588.60 1,161.33 2,263,976.27 1,093.60
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Table 6.3: Performance of hyper-heuristics in Sub-phase 2 of preliminary testing. Time values
are shown in milliseconds.

Instance
01-BLCorner (74123) 02-X (71593) 03-Tower (18523) 04-BRCorner (12963)

CCs Time CCs Time CCs Time CCs Time

ehi-85-297-0 ext.xml 65,939 78 61,785 62 61,785 62 61,785 62
ehi-85-297-10 ext.xml 43,717 62 43,717 62 43,717 46 1,130,451 2,012
ehi-85-297-11 ext.xml 47,731 31 47,731 31 47,731 31 47,731 31
ehi-85-297-12 ext.xml 827,114 811 1,270,468 2,012 768,058 873 57,654 62
ehi-85-297-13 ext.xml 36,681 31 998,550 2,012 36,681 31 36,681 31
ehi-85-297-14 ext.xml 35,208 31 35,208 31 35,208 15 35,208 31
ehi-85-297-15 ext.xml 1,172,938 2,012 52,904 62 52,904 62 1,298,061 2,012
ehi-85-297-16 ext.xml 1,132,466 2,012 1,327,590 2,012 908,033 2,012 1,275,989 2,012
ehi-85-297-17 ext.xml 1,024,622 2,012 66,880 46 846,067 2,012 916,828 2,012
ehi-85-297-18 ext.xml 746,323 2,012 60,273 78 1,167,018 2,012 789,101 2,012
ehi-85-297-19 ext.xml 37,733 46 37,733 31 1,343,652 2,012 1,182,199 2,012
ehi-85-297-1 ext.xml 1,494,234 2,012 55,901 46 1,518,762 2,012 1,268,360 2,012
ehi-85-297-20 ext.xml 866,593 2,012 891,733 2,012 1,152,277 2,012 729,748 2,012
ehi-85-297-21 ext.xml 58,840 46 60,426 46 56,143 46 95,342 78
ehi-85-297-22 ext.xml 77,977 62 230,722 171 1,062,656 2,012 366,597 265

...

Sum 42,547,375 75,541 53,177,188 103,836 63,088,682 111,497 52,664,575 97,740
Average 425,473.75 755.41 531,771.88 1,038.36 630,886.82 1,114.97 526,645.75 977.40

conducted, in average, through a 170-minute time window. This may be due to the fact that all
instances in EHI-85 are unsatisfiable and contain a high amount of constraints: if the search
space is vastly populated by constraints, unsatisfiability is likely to appear.

For sub-phase 4, we turned our view to QCP again, so we performed a 1000 iteration
learning process for 20-block-long hyper-heuristics on 15% of QCP-15. Results for this phase
are presented in Table 6.4.

Table 6.4 shows quite a different story from that in Sub-phase 3. The instances were
extremely difficult, as most of the instances show a timeout exception, which are those time
values with more than 2000 milliseconds. This dataset represented a challenge, so for the
next phase some of the parameters changed. Sub-phase 5 consisted in a different learning
focus: the training was conducted on QCP-10 and the testing on both the QCP-10 and QCP-
15 datasets. Results of this phase are shown in Table 6.5.

Table 6.5 shows some interesting remarks. First of all, no hyper-heuristic could solve
any of the QCP-15 problem instances. This confirms the idea of the dataset being much more
complex than its -10 counterpart. The second point of interest here is the great difference
between results. The 2HBars hyper-heuristic solved nine out of 15 instances in QCP-10,
and no instance from QCP-15. On the other hand, 2VBars solved only two of the QCP-10
instances. One can look at the average of consistency checks done by each method to notice
that 2VBars is clearly ‘trapped’ inside a very difficult part of the search. This efficiency
gap may be alarming, but additional samples are needed if one were to conclude behavioral
aspects like these. For that reason, we decided that it was best for the training to be performed
on the hard instances of QCP-15, and then tested on both. This is the Confirmatory Phase of
experimentation, which is detailed in the next Section.
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Table 6.4: Performance of hyper-heuristics in Sub-phase 4 of preliminary testing. Time values
are shown in milliseconds.

Instance
01-cross (48526) 02-2OHBars (718293) 03-Beast (6666)

CCs Time CCs Time CCs Time

qcp-15-120-0 ext.xml 3,137,522 1,872 3,910,601 2,012 4,481,021 2,012
qcp-15-120-10 ext.xml 3,668,282 2,012 3,992,422 2,012 4,523,656 2,012
qcp-15-120-11 ext.xml 3,800,111 2,012 3,927,342 2,012 4,523,452 2,012
qcp-15-120-12 ext.xml 4,248,294 2,012 4,388,617 2,012 4,747,947 2,012
qcp-15-120-13 ext.xml 4,107,861 2,012 4,192,631 2,012 5,013,368 2,012
qcp-15-120-14 ext.xml 4,172,560 2,012 4,145,455 2,012 5,038,575 2,012
qcp-15-120-1 ext.xml 2,344,571 1,279 4,052,766 2,012 4,333,987 2,012
qcp-15-120-2 ext.xml 3,881,509 2,012 3,940,556 2,012 4,905,429 2,012
qcp-15-120-3 ext.xml 4,099,492 2,012 4,089,526 2,012 4,603,404 2,012
qcp-15-120-4 ext.xml 3,795,635 2,012 3,781,318 2,012 4,679,460 2,012
qcp-15-120-5 ext.xml 3,922,985 2,012 4,337,474 2,012 4,720,946 2,012
qcp-15-120-6 ext.xml 3,838,566 2,012 4,041,384 2,012 4,792,059 2,012
qcp-15-120-7 ext.xml 3,774,366 2,012 4,331,051 2,012 4,837,609 2,012
qcp-15-120-8 ext.xml 3,874,770 2,012 4,143,709 2,012 4,543,545 2,012
qcp-15-120-9 ext.xml 3,856,538 2,012 4,190,676 2,012 5,055,620 2,012

Sum 56,523,062 29,307 61,465,528 30,180 70,800,078 30,180
Average 3,768,204.13 1,953.80 4,097,701.87 2,012.00 4,720,005.20 2,012.00

6.2 Phase II. Confirmatory Testing
Phase II of the CSP experimentation consisted on confirming the notion that QCP-15 is com-
putationally harder than the rest of the datasets, as well as showing that there is work to be
done when dealing with search spaces of increased size.

Table 6.6 shows a summary of the experiments using consistency checks as a time
unit. Table 6.7 shows the same results on milliseconds, where timeouts are easier to ob-
serve. Fig. 6.1 illustrates the consistency checks of all different methods per instance in the
datasets.

Table 6.6 contains some interesting points. The first thing that comes into play seems
to be the “efficiency” of the best hyper-heuristic method, BEST-HH (out of 18 runs of this
test). This method obtained around 2.16 million of consistency checks on average for the 30
problem instances. The next method, the median hyper-heuristic, denoted as Median-HH and
being the expected average case of the learning process, obtained second place in consistency
checks with 3.1 million CCs. The DOM heuristic, by itself, ranked third with 3.5 million CCs.
Again, the expected average case seems to be better than the best of the heuristics in isolation.
Though it may seem like a small gain (by a 400 thousands-odds difference), half a million
consistency checks less may not be that much for an everyday-use computer but could yield a
considerable difference if solving for many problems instances.

Another interesting finding is that no heuristic is able to solve any instance on the QCP-
15 dataset. However, the Best-HH (viz. TLSting, the second pattern in Fig. B.3) was able
to solve one of the instances of QCP-15. This may be easier to observe in Table 6.7 where
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Table 6.5: Performance of hyper-heuristics in Sub-phase 5 of preliminary testing. Time values
are shown in milliseconds.

Instance
01-2HBars (415263) 02-2VBars (741852)

CCs Time CCs Time

qcp-10-67-0 ext.xml 87,370 31 5,182,074 2,012
qcp-10-67-10 ext.xml 4,411,727 2,012 5,423,247 2,012
qcp-10-67-11 ext.xml 4,117,404 2,012 4,906,364 2,012
qcp-10-67-12 ext.xml 4,399,692 2,012 5,399,095 2,012
qcp-10-67-13 ext.xml 3,968,393 2,012 5,057,070 2,012
qcp-10-67-14 ext.xml 4,159,763 2,012 5,657,637 2,012
qcp-10-67-1 ext.xml 62,515 31 4,796,905 2,012
qcp-10-67-2 ext.xml 64,419 31 5,205,228 2,012
qcp-10-67-3 ext.xml 63,930 46 5,393,661 2,012
qcp-10-67-4 ext.xml 63,103 31 5,039,885 2,012
qcp-10-67-5 ext.xml 117,629 62 5,203,146 2,012
qcp-10-67-6 ext.xml 89,364 46 4,745,586 1,950
qcp-10-67-7 ext.xml 68,269 46 5,080,645 2,012
qcp-10-67-8 ext.xml 4,423,337 2,012 4,351,775 1,684
qcp-10-67-9 ext.xml 463,051 218 5,381,340 2,012
qcp-15-120-0 ext.xml 4,910,040 2,012 6,842,662 2,012
qcp-15-120-10 ext.xml 5,118,564 2,012 6,432,994 2,012
qcp-15-120-11 ext.xml 5,220,766 2,012 7,155,374 2,012
qcp-15-120-12 ext.xml 5,022,431 2,012 6,891,864 2,012
qcp-15-120-13 ext.xml 5,239,264 2,012 6,920,871 2,012
qcp-15-120-14 ext.xml 5,262,942 2,012 6,763,490 2,012
qcp-15-120-1 ext.xml 5,208,805 2,012 6,595,355 2,012
qcp-15-120-2 ext.xml 5,224,663 2,012 6,625,592 2,012
qcp-15-120-3 ext.xml 5,306,572 2,012 6,958,365 2,012
qcp-15-120-4 ext.xml 5,201,055 2,012 6,683,741 2,012
qcp-15-120-5 ext.xml 5,141,406 2,012 7,131,954 2,012
qcp-15-120-6 ext.xml 5,213,704 2,012 6,829,868 2,012
qcp-15-120-7 ext.xml 5,287,519 2,012 6,842,324 2,012
qcp-15-120-8 ext.xml 5,027,869 2,012 6,660,151 2,012
qcp-15-120-9 ext.xml 5,295,651 2,012 6,737,980 2,012

Sum 104,241,217 42,794 178,896,243 59,970
Average 3,474,707.23 1,426.47 5,963,208.10 1,999.00
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Table 6.6: Comparison of heuristic and hyper-heuristic performance in terms of consistency
checks. Entries marked with a star were solved. Best method per instance is highlighted in
bold font.

Instance DOM DEG DOMDEG WDEG DOMWDEG BESTHH MEDIANHH WORSTHH

qcp-10-67-0 ext.xml 68,177 * 8,558,850 6,220,676 * 10,738,844 7,747,438 68,464 * 64,813 * 7,486,155
qcp-10-67-10 ext.xml 6,092,045 11,558,010 8,279,166 10,039,969 8,170,371 1,961,439 * 4,581,360 7,684,053
qcp-10-67-11 ext.xml 126,634 * 11,566,901 8,101,622 11,648,799 8,717,308 3,874,929 4,216,281 7,231,344
qcp-10-67-12 ext.xml 5,980,554 11,949,454 8,582,245 11,217,141 7,732,059 305,971 * 4,215,437 7,553,219
qcp-10-67-13 ext.xml 63,749 * 11,729,419 9,155,159 11,109,788 8,517,710 85,030 * 4,379,737 8,027,395
qcp-10-67-14 ext.xml 589,287 * 12,048,994 10,720,560 10,799,745 1,494,534 673,405 * 4,397,142 8,060,157
qcp-10-67-1 ext.xml 67,910 * 11,898,715 267,973 * 11,380,221 412,486 67,243 * 80,903 * 7,200,555
qcp-10-67-2 ext.xml 68,677 * 11,927,199 7,672,672 * 10,506,197 8,858,486 67,500 * 71,902 * 8,011,467
qcp-10-67-3 ext.xml 67,973 * 11,805,366 8,290,158 10,115,238 2,325,723 67,593 * 138,970 * 7,777,063
qcp-10-67-4 ext.xml 67,760 * 11,985,380 388,541 * 11,092,886 248,078 68,529 * 66,778 * 7,202,130
qcp-10-67-5 ext.xml 69,391 * 10,975,728 8,064,617 10,213,332 517,341 70,881 * 68,333 * 8,001,250
qcp-10-67-6 ext.xml 67,188 * 11,806,112 875,673 * 10,478,362 7,688,753 67,673 * 66,831 * 7,091,347
qcp-10-67-7 ext.xml 67,107 * 11,826,825 442,408 * 11,246,398 1,297,216 65,590 * 67,943 * 7,753,656
qcp-10-67-8 ext.xml 204,075 * 11,571,924 8,092,609 10,609,334 1,630,728 68,326 * 3,764,417 7,523,285
qcp-10-67-9 ext.xml 1,290,825 * 11,895,018 611,457 * 10,921,404 8,077,074 427,271 * 67,958 * 7,786,914
qcp-15-120-0 ext.xml 4,685,045 14,400,910 9,922,171 14,174,476 11,531,654 3,608,267 4,276,030 9,719,269
qcp-15-120-10 ext.xml 6,160,538 15,835,026 10,639,788 14,840,073 12,460,636 3,645,490 4,450,213 9,867,690
qcp-15-120-11 ext.xml 6,926,629 15,355,338 10,676,990 14,087,297 12,611,123 3,935,798 4,378,498 9,757,482
qcp-15-120-12 ext.xml 7,042,968 16,114,789 9,433,327 15,279,010 12,523,036 3,910,956 4,962,932 10,163,964
qcp-15-120-13 ext.xml 6,141,544 16,156,957 8,441,910 15,306,463 12,733,084 4,099,821 4,240,287 9,783,093
qcp-15-120-14 ext.xml 6,703,990 15,634,237 10,596,249 14,089,446 12,606,062 4,194,603 4,983,760 10,201,646
qcp-15-120-1 ext.xml 6,338,169 15,494,121 10,179,103 13,681,650 11,611,404 3,628,326 4,796,956 9,827,919
qcp-15-120-2 ext.xml 6,346,249 15,429,087 10,556,261 14,466,499 11,737,820 3,659,073 4,237,423 9,901,137
qcp-15-120-3 ext.xml 5,978,238 15,531,101 11,163,275 14,349,894 12,100,156 3,710,173 4,596,087 9,938,905
qcp-15-120-4 ext.xml 5,376,893 13,581,828 9,818,717 12,989,444 10,312,813 3,765,607 4,211,880 9,779,524
qcp-15-120-5 ext.xml 5,573,645 14,511,415 10,743,210 13,117,073 12,235,040 3,803,083 4,565,165 9,880,091
qcp-15-120-6 ext.xml 5,316,315 14,048,721 8,209,345 11,218,805 10,304,313 3,901,690 4,249,834 9,859,525
qcp-15-120-7 ext.xml 5,543,476 15,262,425 10,581,985 13,581,551 11,864,889 3,296,722 * 4,714,078 9,491,222
qcp-15-120-8 ext.xml 5,862,847 15,610,418 10,354,540 14,174,750 12,554,662 3,784,736 3,801,558 10,399,086
qcp-15-120-9 ext.xml 6,321,079 15,501,444 10,409,071 14,762,213 10,655,608 4,057,007 4,803,964 10,286,453

Sum of CCs 105,208,977 401,571,712 237,491,478 372,236,302 251,277,605 64,941,196 93,517,470 263,246,996
Average CCs 3,506,965.90 13,385,723.73 7,916,382.60 12,407,876.73 8,375,920.17 2,164,706.53 3,117,249.00 8,774,899.87
Rank 3 8 4 7 5 1 2 6
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timeout events (method could not solve) are those with more than 2000 milliseconds.
Actually, there were some occasions where the hyper-heuristic model evolved into a

sequence of heuristics that were able to solve some instances of QCP-15—six hyper-heuristics
out of 18 managed to find a way to solve four instances: qcp-15-120-1, qcp-15-120-6
and qcp-15-120-7 twice, and qcp-15-120-8 once.

This reinforces the notion found for KP, back in Chapter 5, that the method is able to
come up with better solutions using a mixture of non-optimal operators.

Additionally, a single test run was conducted using a longer timeout: 3000 milliseconds
up from 2000. The best heuristic, DOM, was able to solve the first instance of QCP-15 with
this extra time. In the case of BEST-HH, TLSting, it could solve three instances from the
dataset up from one. The solved instances were qcp-15-120-0, qcp-15-120-1 and
qcp-15-120-2. An interesting found, since it seems that training with a lower timeout
was enough to achieve better results than the best heuristic if an extended timeout is allowed
during the testing phase.

Table 6.7: Comparison of heuristic and hyper-heuristic performance in terms of computing
time (milliseconds). Best method per instance is highlighted in bold font.

Instance DOM DEG DOMDEG WDEG DOMWDEG BESTHH MEDIANHH WORSTHH

qcp-10-67-0 ext.xml 125 2,000 1,687 2,000 2,000 31 31 2,000
qcp-10-67-10 ext.xml 2,000 2,000 2,000 2,000 2,000 998 2,012 2,000
qcp-10-67-11 ext.xml 46 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-10-67-12 ext.xml 2,000 2,000 2,000 2,000 2,000 156 2,012 2,000
qcp-10-67-13 ext.xml 15 2,000 2,000 2,000 2,000 62 2,012 2,000
qcp-10-67-14 ext.xml 156 2,000 2,000 2,000 328 343 2,012 2,000
qcp-10-67-1 ext.xml 15 2,000 62 2,000 78 31 31 2,000
qcp-10-67-2 ext.xml 15 2,000 1,671 2,000 2,000 31 46 2,000
qcp-10-67-3 ext.xml 15 2,000 2,000 2,000 546 46 78 2,000
qcp-10-67-4 ext.xml 15 2,000 93 2,000 62 31 31 2,000
qcp-10-67-5 ext.xml 15 2,000 2,000 2,000 140 31 46 2,000
qcp-10-67-6 ext.xml 15 2,000 234 2,000 2,000 46 31 2,000
qcp-10-67-7 ext.xml 15 2,000 93 2,000 312 46 31 2,000
qcp-10-67-8 ext.xml 62 2,000 2,000 2,000 406 31 2,012 2,000
qcp-10-67-9 ext.xml 468 2,000 140 2,000 2,000 265 31 2,000
qcp-15-120-0 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-10 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-11 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-12 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-13 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-14 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-1 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-2 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-3 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-4 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-5 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-6 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-7 ext.xml 2,000 2,000 2,000 2,000 2,000 1,872 2,012 2,000
qcp-15-120-8 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000
qcp-15-120-9 ext.xml 2,000 2,000 2,000 2,000 2,000 2,012 2,012 2,000

Solved 13 0 7 0 7 15 9 0
Time 34,977 60,000 49,980 60,000 47,872 34,200 42,608 60,000
Rank (Solved) 2 7 4.5 7 4.5 1 3 7
Rank (Time) 2 7 5 7 4 1 3 7
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However, taking a look at the worst case of learning (denoted as Worst-HH in Tables 6.6
and 6.7) shows a non-desirable behavior: the method was not able to solve any instance
at all, nor the ‘easy’ ones in QCP-10 nor any difficult instances from the QCP-15 dataset.
These alarming results can be confirmed comparing the amount of consistency checks be-
tween Worst-HH (namely, the 2OVBars pattern—fourth row, fifth column in Fig. B.3 in Ap-
pendix B) and the Best-HH; the difference is over six million CCs. Therefore, one can notice
that there are conditions under which learning seems impossible for a small amount of time.
In this case, 1000 iterations seem to be insufficient to compensate for an unfavored spot at the
start of the searching process.
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Figure 6.1: Performance of the best hyper-heuristic method per instance, compared against
oracle and worst methods available.

Fig. 6.1, shows the best hyper-heuristic method in a red, dotted line, compared to the
best and worst methods available (based on Table 6.6). Though it seems that the best-hyper-
heuristic method works “as good” as the best method available, this behavior is actually a
double-edged blade. Best-HH was the method which performed less consistency checks in
average, including for those problem instances which it could not solve. The method is defi-
nitely learning to optimize its fitness function: minimize consistency checks. However, how
could one measure the depth of a search? If two methods A and method B both failed when
solving an instance, which one performed better? Which of these methods was closer to reach
the goal of proving satisfiability or unsatisfiability? A bad decision in a CSP does not guar-
antee that the search is going in a bad direction, contrary to KP where the profit can be easily
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compared to ensure taking the best decision. An alternative is to test the “generality” of the
solver. Table 6.7 includes a row with information about the amount of problems solved by
each method. One could compare the best hyper-heuristic method against the DOM heuristic
and end up choosing the hyper-heuristic solver as a more general approach. A bit more expen-
sive, since the training process of the hyper-heuristic consumes a decent amount of time, but
it could find a solution to some problems which were not solved by heuristics alone. This is
a good feature, which is pretty consistent for both the QCP-10 and QCP-15 datasets. Fig. 6.2
illustrates the stability of the learning mechanism on the QCP-10 dataset, and Fig. 6.3 shows
the stability in QCP-15.
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Figure 6.2: Boxplot of Hyper-heuristic methods based on the performance on all QCP-10
instances.

As shown in Fig. 6.2 and 6.3, there is no significant difference between the means for
most of the hyper-heuristic methods. The stability is easier to observe in QCP-10, where the
notches of the boxes overlap. QCP-15 results are a bit more unstable, but the medians on most
methods show no statistical difference.

However, there are specially ‘bad’ looking methods. For example, hyper-heuristics 11,
14 and 17 were on the high-order of the amount of consistency checks. This behavior suggests
that the time dedicated to the learning process may had been insufficient. Method number
17 (the infamous 2OVBars pattern) could not solve not even a single instance of all the 30
available in the datasets. It is also clear that these methods are outliers, since their medians
are significantly different from those of the rest of the hyper-heuristic methods.
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Figure 6.3: Boxplot of Hyper-heuristic methods based on the performance on all QCP-15
instances.
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More on stability and local-optima escaping is discussed in the final Chapter. Next
section details heuristic interaction analysis.

6.3 Analysis of Heuristic Sequences
As in Chapter 5, a frequency analysis was conducted using the evolution history of all hyper-
heuristics from the Confirmatory Testing phase in order to find out if the model prefers or
avoids certain combinations of heuristics. We analyzed the frequency of simple 2-digit heuris-
tic sequences, namely all permutations of the heuristics presented in Table 3.3, back in Chap-
ter 3. This experiment included all 18 instances from the Confirmatory Testing Phase, those
shown in the run chart available in Fig. B.3, in Appendix B. Tables 6.8 and 6.9 show the
frequency of each sequence, where 0 is DOM, 1 is DEG, 2 is DOMDEG, 3 is WDEG and 4
refers to DOMWDEG. Additionally, Fig. 6.4 illustrates this behavior in a boxplot.

Table 6.8: Frequency of two-segment low level heuristic sequences for CSP (I)

Run/Sequence 00 01 02 03 04 10 11 12 13 14 20 21 22

1 8456 57 1953 36 1169 0 0 8 49 0 2067 0 234
2 6579 0 91 0 1906 0 22 0 0 30 150 23 51
3 5314 104 1318 8 995 60 14 60 6 34 1423 0 76
4 6765 0 2205 589 1040 15 0 120 7 0 2437 0 1118
5 7948 0 1896 98 473 16 33 72 0 100 1877 72 327
6 5504 238 2832 962 1925 88 0 0 215 72 2737 67 46
7 7268 0 907 220 991 94 49 152 0 131 441 0 1117
8 7893 115 1078 59 2034 62 0 65 54 38 1253 5 140
9 3878 1000 1944 981 29 1022 21 13 0 10 952 13 1005

10 9153 371 1636 763 2602 281 271 0 271 9 1234 0 0
11 5389 78 141 81 1136 46 0 97 12 68 823 106 6
12 1692 0 932 56 1887 106 894 1740 254 1068 0 2937 1000
13 8862 112 238 42 1899 67 0 114 63 43 461 47 307
14 7508 0 1004 1030 964 0 0 24 0 0 1026 24 75
15 1000 1000 0 0 1000 1009 1986 2000 0 0 0 1990 2003
16 7311 242 946 0 1000 177 0 0 142 65 1028 0 248
17 7706 105 1237 8 29 117 26 47 70 0 1965 96 1015
18 3366 336 844 546 3321 336 0 0 307 0 1005 307 693

Fig. 6.4 shows a clearly dominant presence of the pure DOM–DOM sequence. Not only
that, but all those heuristic interactions of DOM have an statistically different mean than all
other heuristic interactions.

Another interesting thing regarding the sequence DOM–DOM is its standard deviation.
The IQR is quite large, since the highest and lowest values are somewhat far from each other.
This remark along with the information from Tables 6.6 and 6.7 can be used to conclude that,
even if DOM–DOM is the hyper-heuristic’s favorite, it does not guarantee finding a solution.

It may be worthwhile to mention that the method which performed better was Best-
HH, which solved only half of the available instances in the set when testing with a 2000-
millisecond timeout. As mentioned before, the number of solved instances increases when
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Table 6.9: Frequency of two-segment low level heuristic sequences for CSP (II)

Run/Sequence 23 24 30 31 32 33 34 40 41 42 43 44

1 11 109 66 0 46 4 0 1255 0 17 16 63
2 0 66 0 0 0 0 0 1826 80 125 0 1262
3 0 54 4 10 0 0 6 1003 46 57 8 53
4 547 16 649 1 418 814 0 1023 141 284 33 197
5 179 15 104 95 48 37 92 372 21 127 62 59
6 27 77 1128 0 76 0 0 1999 0 0 0 82
7 230 842 239 142 0 230 117 1627 0 454 0 815
8 0 141 97 14 62 131 173 1856 85 194 132 978
9 0 1987 968 32 17 32 0 1048 0 978 4 2018

10 0 0 1019 281 0 430 145 2480 271 5 0 769
11 147 120 204 36 0 48 20 359 3 958 20 136
12 0 0 837 163 328 63 56 1932 68 937 1074 63
13 7 61 26 17 69 35 12 1791 43 155 14 229
14 0 135 1030 0 0 14 15 1034 0 65 15 1000
15 1000 1009 0 0 0 0 1000 991 10 1999 0 1
16 236 449 142 0 357 37 258 1065 142 186 379 808
17 28 1 58 25 23 41 0 21 8 1 0 0
18 723 0 2090 0 0 0 442 1616 0 1191 956 337
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Figure 6.4: Boxplot of Heuristic sequences.
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the timeout is increased during the testing phase, even if the training was done using a 2000-
millisecond timeout. The presence of solutions found by the hyper-heuristic models in a set
where no standalone heuristic could find its way suggests that there are key decision points
where changing operators may result in great reductions in complexity.

6.4 Summary
This chapter reviewed the results of the CSP branch of experimentation.

32 hyper-heuristics were trained and tested in this branch. The preliminary phase con-
sisted of 14 hyper-heuristics trained and tested over different instance sets from the literature,
mostly for parameter adjustment and experiment design.

The confirmatory testing phase comprised 18 hyper-heuristics trained on QCP-15 and
tested on both QCP-10 and QCP-15. The method was able to reduce the amount of consis-
tency checks and solved most instances in QCP-10. QCP-15 was a hard challenge, but a third
of the hyper-heuristics managed to obtain solutions in some instances despite the fact that no
solution could be found by standalone heuristics before timeout.

Another interesting found was that the method performed better if the 2000-millisecond
timeout was increased during the testing phase, as it could find solutions to additional problem
instances even when the training process was carried out using a lower timeout limit. On the
other hand, increasing the timeout limit did nothing for the best heuristic in isolation.

A frequency analysis was also conducted using evolution data from the 18 hyper-heuristics
in the confirmatory testing phase. Results shown that, as it was the case of CSP, there was a
significant difference between a single heuristic and the rest of the interactions, which showed
no statistical difference between them. Along with the information on the number of instances
solved, one can conclude that, again, using the best heuristic does not guarantee finding a
solution—all the more so since there is no way to tell if the method is searching in the right
direction without proper objective functions.

More about diversity and overfitting is summarized in Chapter 7.



Chapter 7

Conclusions and Future Work

This chapter aims to generalize the findings on Chapters 5 and 6, comparing the results of the
performance of the learning mechanism in the Knapsack Problem and the Constraint Satisfac-
tion Problem, summarizing and pointing out the advantages and disadvantages of the model.
Additionally, the research questions originally described in Section 1.3 are to be answered.

7.1 On Performance and Quality of the Hyper-heuristic Model
As seen on Chapters 5 and 6, the method is doing what it was meant to: learning to identify
key decision points where changing heuristics may be appropriate. This is easily seen in the
KP results, where the total profit of the dataset was greater than the best heuristic available
(Max-PW). Not that obvious in CSP, but this was also the case for some instances. When
solving easy instances (like the ones in QCP-10), most hyper-heuristics performed less con-
sistency checks than the best heuristic available (DOM). This shows that, clearly, the learning
process is of great importance when trying to get closer to optimality. For optimization prob-
lems like Knapsack, when profit is more easily countable, this hyper-heuristic model may be
suitable. However, decision problems like the Constraint Satisfaction Problem seems to be a
hard challenge. The size of the search space is clearly difficult to traverse, but experiments
showed that under some circumstances the method prevailed. This is because of the nature
of the CSP: there is no way to ensure that making a decision will lead the method to find a
solution. In contrast to this behavior, in KP there is a strong objective function which serves
as a guidance: one can measure how impactful a decision is, since a given problem state could
be distinguished from the rest by the profit it generates. Therefore, problems where the greedy
approach works may be suitable for this method.

What is needed, then, to increase the exploration of new solutions? As pointed out in
Section 2.4.1, back in Chapter 2, there is no algorithm that performs better than other when all
problems are evaluated as a whole. Diversity, however, may be of use for exploitation strate-
gies like the evolutionary algorithm used in this research. Having a wide range of heuristics
to choose from is one of the many ways in which the model could improve.

Another approach is to “mix” acceptance operators, as Lehre and Özcan suggest in [36].
Accepting worse solutions (not only improvements) than the current candidate could lead to
escape local optima faster. However, that represents an additional parameter to set up when
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dealing with the training phase.
Increasing the number of iterations for the training phase could also be considered as a

way to let the method explore more options when dealing with decent-sized problems (like
constraint satisfaction). This could back-fire, of course, when dealing with small instances or
problems more on the easy-side of NP-Complete problems—like Knapsack—since it could
lead to overfitting.

Another way to explore different regions of the search space is to increase the diversity
of mutation operators. From an evolutionary point of view, it may not make sense to have
different mutators. Even though the mutation phase is “assured” on every iteration of the
model, and is a bit disruptive, it may not be enough when dealing with combinatorial problems
with random components. As mentioned in Chapter 4, some mutators are milder than others.
Adjusting their chance of being selected by designing a probability distribution may also be a
good idea.

A more evolutionary-friendly alternative to disruptive mutation is that of crossover.
Dang et al. recently showed that using diversity during the crossover phase of a simple genetic
algorithm (µ + 1) with µ individuals and just one offspring, escapes from local optima faster
than using only mutation even when the probability of mutation tends to be 1 [13]. This is
quite relevant if working with difficult problems, where µ searchers will probably converge
to a single solution faster than only one searcher.

This brings up the idea of searching over actual high-level methods and using them as
prospects for solving, for example, when metaheuristics or even hyper-heuristics could be part
of the building blocks of the solution. However, adding all sorts of ‘diverse’ strategies to the
selection pool is actually expanding the search space, and getting to a solution which is better
than one which is easily obtainable using heuristics may represent an increase in resources and
time; it may not be worth it for easy problems. And though it is true that no “best algorithm”
exists for all problems, generalization is not implausible.

Problem characterization may represent a roadblock when dealing with complex prob-
lems. A flexible approach, like the hyper-heuristic model in this dissertation, may be suitable
to obtain solvers which outperform low-level heuristics when no knowledge of the problem
is known. Furthermore, as in most evolutionary approaches, the metaphor of the evolutionary
algorithm makes it easy to implement, as adding heuristics, mutation operators and objective
functions can be easily mapped to most optimization domains.

Is then appropriate the use of this hyper-heuristic model for combinatorial optimization
problems? The answer, as in most questions of this matter, is: “it depends.” Results on both
CSP and KP exhibited numerous cases of hyper-heuristics beating the profit or consistency
checks (whichever the case may be) obtained by a simple heuristic. However, overall, the
method performed better in KP than in CSP. The CSP, being a decision problem, does not
naturally come with an objective function. The minimization of consistency checks is actually
just an approximated measure—a rough guess—about how well the searcher is doing. It is not
an actual objective function. It can be then concluded that the method requires the presence
of a precise objective function which guides the search in order to perform well. Decision
problems may be more difficult to attack, but experimental results showed that the method can
put out decent solutions nonetheless, which strengthens the generality and portability of the
model. Without too much hassle, the model can be transported to other domains at a certain
extent. Parameter setting, however, is still an aspect to consider, as in many optimization
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algorithms, but as described by Poli in [50], this quest for the optimal parameter setting is a
search problem on its own, where we—the algorithm designers—are the searchers.

Another interesting find pertaining the learning mechanism is the fact that better so-
lutions can actually be constructed using bits and pieces of non-promising methods. This
answer the question of the possibility to obtain a good solution from combining heuristics
that perform poorly in isolation. Having found that “better decisions” are actually made of
a sequence of “good decisions” in greedy approaches, will the learning method to venturing
into including those non-promising methods into the selection pool in order to exploit their
approaches to problem solving.

7.2 Future Work
The field of combinatorics is immense, and there are many approaches to take if one were to
expand this research. On one hand, the idea of using additional mutators is quite attractive,
since the model and the implementation allow this kind of “expansion” to be pretty easy.
A mutator builder could be also considered. The idea seems not only fun, but also very
ambitious.

On the other hand, mutation operators in this research were applied using a uniform
probability distribution, but some mutation operators are more disruptive than others, and
some others could lead to faster convergence. Analyzing adequate conditions and probability
distributions for the model is an interesting challenge which could be an entire thesis on its
own, just as the parameter setting on difficult decision problems like constraint satisfaction.

Expanding the model is another interesting idea, whether using some kind of crossover,
or adding a bit of problem characterization; not that much to be a manual and tedious task,
but not inexistent as these little reductions in search space could represent huge complexity
jumps.

Combining diverse strategies for parameter setting, move acceptance and playing around
with the fitness function is only a handful of the many ways in which this hyper-heuristic
model can be expanded and transported to other areas of optimization.

Definitely more samples are needed. The statistical nature of the project sets up the op-
portunity of performing comparisons between instances in many areas, and such an invitation
to explore heuristic interaction should not be wasted—there is way too much to learn from
using evolutionary-based hyper-heuristics.
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Appendix A

Reading a UML Sequence Diagram

Sequence diagrams are used to describe interactions and operations between objects in a se-
quential, top-down manner.

The objects (or classes) involved in a process are depicted by rectangles on the top of
the diagram. A dotted vertical line represents the lifetime of each object. Vertical rectangles
along lifelines are used to represent actions performed by an object. Interactions (messages)
between objects are represented using horizontal arrows. Solid arrow heads represent syn-
chronous messages (e.g. function calls which require a response), while open arrow heads
represent asynchronous messages (e.g. passing parameters). Dashed lines in arrows are used
to represent reply messages (e.g. return values).

Fig. A.1 shows a UML Sequence Diagram of a simple sequence when sending an e-
mail. A checkEmail task is started at the :Computer object. Short after this, a func-
tion sendUnsetEmail is called from the computer to the :Server object. The server
object processes the requests and finishes without giving any response to the computer. A
new task is created on the computer, newEmail, which calls the server and awaits for a re-
sponse. An additional task is created on the computer shortly after getting a response from
the server, downloadEmail (specifically the newEmail instance) and is passed on to the
server to process. Finally, the computer asks the server to deleteOldEmail and the server
completes this request. The user finishes using the computer, and so the whole process is
terminated.
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Figure A.1: Sequence diagram of e-mail message sequence. Picture freely available un-
der a CC BY-SA 3.0 license, available at: https://en.wikipedia.org/wiki/
Sequence_diagram.

https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Sequence_diagram


Appendix B

The CSP Run Chart

During the preliminary phase of the CSP branch of experimentation, some parameter adjust-
ments were made. These adjustments made many minute changes between sub-phases, and
pinpointing which run had which characteristics was difficult. For this reason, each run was
labeled with a human-readable label, a catchy “name” which was easier to remember. The
name of a hyper-heuristic depended on the seed used to generate the subset of its training
instances. Table 3.5, back in Chapter 3 lists all hyper-heuristic methods and their respective
labels and seeds.

A visual representation was generated for this table, which was inspired by the arrange-
ment of the keys in the numeric keypad, which is present in most personal computers key-
boards. Fig. B.1 shows the layout of a numpad.

Figure B.1: An abstract representation of a numeric keypad (numpad).

This chart shows a group of squares where some of them may be filled. A filled square
represents one or many key-presses at that number. The numbers are read in a top-down
fashion, going one column at a time, from left to right.

Since a keypad could be used to show the information of a single run (one hyper-
heuristic), many keypads were laid out one next another in order to group them. Each row
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represents a sub-phase. Patterns in the same row indicate that they were part of the same
sub-phase. Fig. B.2 shows the run-chart for the preliminary experimentation phase in CSP.

Figure B.2: Run chart for the preliminary experimentation testing phase of the CSP branch of
the analysis.

Therefore, the second run of the first sub-phase (first row, second column of Fig. B.2)
can be decoded as 18523, which is the seed used for that specific run. This notation is used
throughout Chapter 6 to easily identify specific points of the experimentation phase. A similar
chart is provided for the confirmatory testing phase as well, in which all patterns belong to
the same sub-phase. The chart for the runs in the confirmatory testing phase is presented in
Fig. B.3.

It is our intention to further improve and formalize the pattern for seed representation in
order to use it in future occasions.
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Figure B.3: Run chart for the confirmatory testing phase of the CSP branch of the analysis.
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[62] TERASHIMA-MARÍN, H., ORTIZ-BAYLISS, J. C., ROSS, P. M., AND VALENZUELA-
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