
Evolutionary Computation with Islands

Xavier F. C. Sánchez Díaz
Ole Jakob Mengshoel

N
IK

 - 
N

or
w

eg
ia

n 
In

fo
rm

at
ic

s 
C

on
fe

re
nc

e

Extending EvoLP.jl for Parallel Computing



2

Outline
- A brief overview of evolutionary computation

- Our framework: EvoLP.jl

- The problem and our motivation

- The operators

- The tests

- Conclusion and future work



3

Evolutionary Computation
It is a branch of Computational Intelligence that solves 
optimisation problems using evolution-inspired 
algorithms.

● A population of candidate solutions is evolved iteratively
● Exploration: mutation (stochastic perturbation)
● Exploitation: recombination (of promising solutions)



4

Our Framework
We made EvoLP.jl!

"A playground for evolutionary 
computation—for prototyping evolutionary 
solvers such that one can swap a component 
or two and see how it affects the run"



EvoLP.jl
A playground for Evolutionary Computation in Julia

Project repo at
https://github.com/ntnu-ai-lab/EvoLP.jl

Documentation at https://ntnu-ai-lab.github.io/EvoLP.jl/stable

julia> import Pkg
julia> Pkg.add("EvoLP")

An open-source framework to code and analyse 
evolutionary computation solvers with:

- Test functions for optimisation
- Result reporting and Statistics logging
- Built-in algorithms and support for custom 

operators

Partially funded by NFR Proudly supported by 
NAIL

https://github.com/ntnu-ai-lab/EvoLP.jl
https://ntnu-ai-lab.github.io/EvoLP.jl/stable


6

Motivation
- Challenge: To find multiple 

optima in multimodal 
functions, we need diversity 
preservation mechanisms.

- Fitness sharing
- Niching
- Clustering
- Speciation

Jacques Descloitres
MODIS Land Rapid Response Team
NASA GSFC



7

Motivation
- Challenge: To find multiple 

optima in multimodal 
functions, we need diversity 
preservation mechanisms.

- We can preserve diversity by 
evolving multiple populations 
and occasionally exchange 
individuals

- The Island model of the 
Genetic Algorithm

Jacques Descloitres
MODIS Land Rapid Response Team
NASA GSFC



8

Motivation
- Opportunity: we have HPC capabilities

- Can we expand EvoLP.jl to run easily in HPC clusters?

- Opportunity: there is little support for parallel 
execution in EC software in Julia.

- Evolutionary.jl and Metaheuristics.jl include only distributed 
evaluation using threads

- No registered package supports island models



9

Motivation
Parallel architectures provide many benefits:

- Faster runtime by distributing the workload

- Ease of modelling island approaches
- Perfect match for MPI
- Convergence benefits of the communication
- Communication functions as a diversity preservation technique



10

EvoLP – The Taxonomy
A block for each step in the evolution process:

- Population Generators
- Selectors
- Recombinators
- Mutators



11

EvoLP – The Taxonomy
A block for each step in the evolution process:

- Population Generators
- Selectors
- Recombinators
- Mutators
- Island operators



drift operator
Send individuals from one island to another

Copernicus Sentinel 
(2020), ESA



strand operator
Receive individuals from one another island

Copernicus Sentinel 
(2020), ESA



reinsert operator
Reinsert individuals into population, replacing some of the old ones 
according to a given policy

Copernicus Sentinel 
(2020), ESA



15

Tests Setup
We compare islands vs single population (serial).

For the islands:
- An archipelago with 64 islands

- 1-way ring topology
- All islands are identical

- drift selects deme uniformly at random
- reinsert replaces worst deme by the received deme



16

Tests Setup
- Each population is a Generational Genetic Algorithm:

- Population size: 30 individuals
- Random initialisation
- Rank based selection of parents
- Uniform crossover
- Gaussian mutation with 𝜎 = 0.1
- Limited to 100 generations

- Tested on Idun using Julia 1.7.2 and EvoLP.jl 1.2



17

Tests – Ackley

Parallel approach converges more 
consistently than the serial approach



18

Tests – Rosenbrock

Fewer outliers on parallel approach, but 
distribution is similar



19

Tests – Michalewicz

Harder to traverse for d=10, similar 
distributions but parallel seems better



20

Tests – Eggholder

Parallel approach converges more 
consistently than the serial approach 



21

Tests – Rana

Parallel approach converges more 
consistently than the serial approach 



22

Conclusions
- We studied island models in multimodal functions

- We found island models provide diversity and show 
convergence benefits over the serial approach

- Extended EvoLP.jl with new communication blocks:
- drift
- strand
- reinsert



23

Future Work
- Ship this extension in EvoLP 2.0 (Q1 2024)

- Expand analysis of diversity preservation mechanisms 
in multimodal landscapes

- Experimenting with other components:
- MPI topologies and overheads
- Other migration selection/replacement policies



Thank you!
Evolutionary Computation with Islands
Extending EvoLP.jl for Parallel Computing

Project repo at
https://github.com/ntnu-ai-lab/EvoLP.jl

Documentation at https://ntnu-ai-lab.github.io/EvoLP.jl/stable

julia> import Pkg
julia> Pkg.add("EvoLP")

An open-source framework to code and analyse 
evolutionary computation solvers with:

- Test functions for optimisation
- Result reporting and Statistics logging
- Built-in algorithms and support for custom 

operators

Partially funded by NFR Proudly supported by 
NAIL

https://github.com/ntnu-ai-lab/EvoLP.jl
https://ntnu-ai-lab.github.io/EvoLP.jl/stable

