This paper explores a novel way of improving selection hyper-heuristics by using neural networks that are trained with information from existing selection hyper-heuristics. These networks learn high-level patterns that result in improved performance concerning the hyper-heuristics they were generated from. At the end of the process, the neural networks work as hyper-heuristics that perform better than their original counterparts. The results presented in this paper confirm the idea that we can refine existing hyper-heuristics to the point of being able to beat the best possible heuristic for each instance.