A Feature-Independent Hyper-Heuristic Approach for Solving the Knapsack Problem

Abstract

Recent years have witnessed a growing interest in automatic learning mechanisms and applications. The concept of hyper-heuristics, algorithms that either select among existing algorithms or generate new ones, holds high relevance in this matter. Current research suggests that, under certain circumstances, hyper-heuristics outperform single heuristics when evaluated in isolation. When hyper-heuristics are selected among existing algorithms, they map problem states into suitable solvers. Unfortunately, identifying the features that accurately describe the problem state—and thus allow for a proper mapping—requires plenty of domain-specific knowledge, which is not always available. This work proposes a simple yet effective hyper-heuristic model that does not rely on problem features to produce such a mapping. The model defines a fixed sequence of heuristics that improves the solving process of knapsack problems. This research comprises an analysis of feature-independent hyper-heuristic performance under different learning conditions and different problem sets.

Publication
A Feature-Independent Hyper-Heuristic Approach for Solving the Knapsack Problem
Xavier F. C. Sánchez Díaz
Xavier F. C. Sánchez Díaz
PhD candidate in Artificial Intelligence

PhD candidate in Artificial Intelligence at the Department of Computer Science (IDI) of the Norwegian University of Science and Technology