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1 Introduction

Context. Heuristic optimization algorithms are widely used to solve complex problems in engineer-
ing, industry, and science. Regardless of their representation, we aim to find solutions that are opti-
mal inside the set of all possible solutions (or what we call the search space). The search landscape
metaphor is a way to “visualize” the search space of an optimization problem [49], and how we ex-
actly “see” this landscape is determined by the plotting techniques we use. Combinatorial problems
in AI are abundant. From pseudo-Boolean problems like model finding [51], sentence summariza-
tion [41] and feature selection [20, 37], to other classical problems like the Traveling Salesman [2],
routing [52], packing problems [36, 39], scheduling [10] and assignment [43]. Furthermore, quite
often we are interested in multiple solutions—multimodality in these problems is common, but its
existence is not always acknowledged. Recent conferences on evolutionary computation had just
a few papers on multimodality (or problems with multiple optima), while the majority of the works
focused on multi-objective optimization, benchmarking, and genetic programming.1

Challenges. How do we get the most information from static visualizations of a combinatorial
search landscape? Combinatorial problems are discrete, and the notions of order and continuity
might not be well defined [35]. Thus, defining a neighborhood is crucial for calculating locality [38].
An interesting idea is to create composite visualizations. However, it is not trivial when an optimiza-
tion problem contains multiple solutions of interest and the problem has high dimensionality [19,
22]. Moreover, oftentimes the number of optimal solutions is large, and we might be interested in
finding as many as possible [11, 38].

Contributions. In this work, we get an overview of several visualization techniques for combina-
torial search landscapes from an information design perspective. We focus on multimodality, and
identify their strengths and limitations. Additionally, we propose a simple framework for combining
these visualizations on the basis of their aesthetic attributes using the Grammar of Graphics [47,
48].

2 Background

2.1 Fitness Landscapes

This paper is aimed at researchers with a moderate understanding of optimization but who are
not necessarily experts in search landscape analysis. We now introduce relevant concepts and
notation.

We define a search (or fitness) landscape as a tuple L = (X , f,N ), where X is the search space,
f is a generic fitness2 function and N is the neighborhood or any notion of accessibility [27].
By generic function we mean that f could be either a real-valued function, or a pseudo-Boolean
function of any arity that we aim to optimize. For the sake of simplicity, we assume, without loss of
generality, that we want to minimize f . The fitness function is navigated using a given optimization
algorithm, and thus L is algorithm-dependent, which in turn determines how the neighborhood N

1See https://dl.acm.org/doi/proceedings/10.1145/3638529 and https://link.springer.com/book/10.1007/

978-3-031-70085-9
2We use the term fitness as it is compared to the ability to survive of an individual in the context of biological evolution.
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is constructed.

The search space X is a set of solutions, which in our case is either a set of binary strings, permu-
tations, or any other combinatorial object [35]. We use b to denote a solution in X , as a solution is
not necessarily a binary string.

We define a global optimum, denoted as b∗, as the optimal solution, i.e., f(b∗) ≤ f(b) for all b ∈ X .
A local optimum is a solution b+ ∈ X such that f(b+) ≤ f(b) for all b ∈ N (b+), where N (b+) is the
neighborhood of b+. The set of all local optima in a given landscape L is represented with L, and
its cardinality (or size) as |L|.

The neighborhood N of a solution b is the set of solutions that are close to b. We define this
closeness using a distance metric d. For example, in the case of binary strings, the Hamming
distance dH is a common choice for d, and the neighborhood of b is the set of all solutions that
differ from b in one bit: N (b) =

{
b′ ∈ X | dH(b, b′) = 1

}
. This neighborhood is usually employed

in local search, genetic algorithms, and many other solvers that operate with bitstrings. In this
work we do not focus on any specific neighborhood nor distance metric, but use these concepts to
understand a search landscape.

Finally, throughout this work, we use several terms to refer to landscape features that resemble
the topography of a physical landscape: peaks, valleys, plateaus, funnels, and basins. We do not
define these terms formally, as their physical analogies should suffice to understand their meaning.

2.2 Visualization and the Grammar of Graphics

The Grammar of Graphics is a framework for building graphics, based on the idea of layering
the different semantic elements of a plot, and then mapping these elements to data. Originally
proposed by Wilkinson [48], the Grammar of Graphics has been implemented in software libraries
and several programming languages, like R [47] and Julia [15].

From the Grammar of Graphics, we highlight two important concepts: aesthetics and geometries.
Geometries are the “physical” elements of a plot: points, lines, bars, etc. These geometrical objects
(which we refer to as geoms) are then mapped to the data using aesthetics elements. Aesthetics,
on the other hand, are the visual properties of the geometries, like color, size, shape and position.
See Table 1 for a list of common aesthetics on different mediums.

The notion of aesthetic elements and geometric objects is useful when designing visualizations for
search landscapes, as we can use these elements to highlight different aspects of the landscape [7,
9]. Most importantly, the main advantage is the natural association between aesthetics elements
and the characteristics of the landscape that can be visualized using them. For example, some
visualizations employ color to represent the fitness of a solution, or use the size of a node to
communicate the size of a basin of attraction. Using this framework, one can design and analyze
visualizations that are both informative and aesthetically pleasing.

2.2 Visualization and the Grammar of Graphics 3



Table 1: Aesthetic attributes in the Grammar of Graphics. Adapted from Table 10.1 in [48]

Form Surface Motion Sound Text

position
size
shape
rotation
resolution

color:
hue
brightness
saturation

texture:
pattern
granularity
orientation

blur
transparency

direction
speed
acceleration

tone
volume
rhythm
voice

label

(a) Michalewicz function (b) Egg Holder function (c) Rana’s function

Figure 1: The landscapes of some 2D test functions in the continuous domain [46]. The z-axis is
used to plot the fitness, while the x- and y-axes are function parameters (shown here as x1 and x2).

2.3 Landscapes and Visualization

From Wright’s conception of the fitness landscape [49] we have inherited the notion of peaks and
valleys in the search space. Since then, the visual features of a search landscape have been
discussed in detail [31, 34]. We now have the notion of ridges, plateaus and basins, and have
identified more global structures like funnels and canals [16, 26, 27].

Visualizing search landscapes of real-valued functions of low dimensionality (R1,R2 or R3) is
straightforward. For higher dimensionalities, one must find a mapping from Rn to R2 or R3, and
then plot the function to get a sense of the search space.3 This mapping forms a continuous
surface that can be analyzed with calculus tools, and our brains can wrap around it due to this
continuity in the space. In this way, the features of the landscape (like peaks, valleys and funnels)
are easily identified. See for example Figure 1 where different landscapes of 2D continuous test
functions are plotted.

The situation is different when we deal with combinatorial landscapes since X is a discrete set.
What before was a smooth dune in the continuous case, becomes a set of platforms floating in
mid-air, and the search points might not be able to be ordered—distance and continuity might

3Finding a mapping from Rn to R2 or R3 is not trivial [19].
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not be well defined in the combinatorial case. We discuss methods for visualizing combinatorial
search landscapes in Section 3, paying special attention to those highlighting multimodality and
their use of geoms and aesthetics. For a more in-depth discussion of the mathematical implications
of combinatorial landscapes, we refer the reader to the work of Reidys and Stadler [35].

2.4 Multimodality in Landscape Analysis

Multimodality, in the context of optimization, refers to the presence of multiple modes in X , i.e., the
presence of multiple optima in the landscape. When doing multimodal optimization, the goal is to
extract the full set of optima and optimizers the problem possesses [32]. Realistically, in practice
we look for multiple local optima for different reasons—to find different alternatives to a solution
(to foster diversity [1] or for solution robustness [3]), to understand the structure of the problem
and improve our search algorithms [22, 30, 43], as well as a stepping stone to avoiding premature
convergence to find the global optimum [11, 38].

Several everyday activities of an AI practitioner involve multimodality. Consider the problem of
feature selection in Machine Learning. It is a combinatorial optimization problem that is inherently
multimodal (as several subsets of features can lead to the same performance of an ML model [13,
37]). Another multimodal combinatorial problem in the field of AI is hyper-parameter optimization:
different combinations of hyper-parameter values can achieve the same classification results [21,
40]. Yet another example is the problem of neural network architecture search, where different
architectures can achieve the same performance [14, 42]. These are only a handful of examples
of multimodal optimization problems in AI, and they are all combinatorial in nature. Therefore, a
push for more studies on multimodality in optimization would be beneficial for both the evolutionary
computation and the landscape analysis community.

3 Related Work

3.1 Distance–Fitness Correlation

One of the key concepts in landscape analysis is the presence of a hypothetical big valley : a region
in the search space where multiple local optima occur at around the same distance from a global
optimum. The big valley is a common feature in multimodal landscapes, and it is often associated
with the presence of a big central funnel [4]. A useful visualization technique to identify funnel-like
structures in search landscapes is to plot the distance between local optima and the global optimum
(or the closest, in case there are multiple global optima). See for example Figure 2, which highlights
many local optima b+ at the same distance from the closest global optimum b∗.

Another approach is to aggregate the local optima in bins, and then reporting the size of each bin
to get a sense of the distribution of local optima in the landscape. Figure 3 shows this approach,
illustrating the landscape of a feature selection problem under different values of regularization.

3.2 Local Optima Networks (LONs)

LONs are the de-facto standard for highlighting the multimodal structure of a search landscape [13,
27, 29, 37]. LONs can be described as graphs where nodes represent the local optima, and the
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Figure 2: Analysis of 2511 local optima, on the feature selection problem of the Credit Approval [33]
dataset using a decision tree classifier. The y-axis shows the quality of a solution (accuracy of
classification) while the x-axis shows average Hamming distance between local optima (cf. left
panel), and Hamming distance from each local optima to its closest global optimum (cf. right
panel).

edges represent paths between them. An additional aesthetic element used in LONs is size, where
bigger nodes represent bigger basins of attraction. Color can be used to further convey the size
of the basin (as shown in Figure 7), but can also be used to communicate the fitness of each
optimum [37].

Different versions of LONs exist, like the Monotonic LON (MLON) where escape edges that end up
in a worse local optima are removed, and the Compressed MLONs where plateaus are compressed
into a single node [26]. Additionally, LONs have been extended to multi-objective landscapes. The
Pareto Local Optimal Solutions Network (PLOS-net), as these LONs are called, are plotted along a
vertical axis to represent the different ranks of the optima [12]. As with LONs, PLOS-nets can also
be compressed to remove plateaus.

Both LONs and PLOS-nets give a visual overview of the multimodality of a landscape as well as its
neighborhood or connectedness. The main focus on these visualizations is to highlight the size of
the basins of attraction, but the number and the distribution of the optima cannot be easily inferred
from these plots.

3.3 Hinged Bitstring Maps (HBMs)

HBMs were introduced for visualizing pseudo-Boolean landscapes in PPSN 2024 [37]. HBMs plot
the entire search space X by slicing the bitstring b into two halves, and using the first half (converted
to its decimal representation) as the x-axis. The y-axis is assigned to the decimal representation of
the second half. Each solution is then plotted as a dot at the (x, y) coordinate, colored by its fitness
value. Optima can additionally be highlighted by using a colored outline. We show an example of
an HBM in Figure 8.
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Figure 3: Hex-bin plot of distance correlation for the Heart Disease (Cleveland) dataset [8], using
a decision tree classifier under four different levels of regularization. Each bin aggregates different
number of local optima, b+. A darker shade means a higher concentration of b+.

HBMs are designed to look at X in its entirety to highlight multimodality. However, depicting the
neighborhood is difficult, as HBMs can become cluttered for large values of n since |X | = |Bn| = 2n.
Nevertheless, one of the advantages of looking at the whole search space is that local optima can
be ‘counted’ and patterns about the distribution of optima can be analyzed.

3.4 Sequence Index Plots

As opposed to bitstrings, sequences do not have an inherent order. As such, visualizing sequences
usually requires full enumeration. Combinations can be represented as a path in a fully connected
graph, and sequences can be represented as a path in a directed graph in a similar manner, but this
approach becomes infeasible for large cardinalities of X , and so a sequence index plot might be
more suitable [5, 7]. A sequence index plot uses the x-axis to represent the order of the sequence,
and the y-axis to stack the different sampled sequences (or the states, in optimization). This type
of visualization is useful when the number of sequences is small. However, it can also become
cluttered when the domain for each position in the sequence is large enough.

Alternative visualizations for sequences exist, but these often include fully-built graphical user in-
terfaces in specialized software, where additional information can be provided via tooltips or other
interactive elements [7, 45]. Among static graphics, LONs tend to be more suitable to represent
search landscapes of sequences. HBMs could also be used if the number of sequences to be
visualized is small, provided that the sequences can be enumerated.

3.5 Search Trajectory Networks (STNs)

A search trajectory network (STN) is a special case of LON. It is a directed graph that represents
the search process of multiple optimization algorithms [28]. As the name implies, the network is
made up of different trajectories, which are paths in X that represent the sequence of states b
visited by each algorithm. Several algorithms can be represented in the same STN, and the edges
can be weighted by the number of times a transition between two states has been made.

STNs can be used to compare different optimization algorithms in a single visualization, using

3.4 Sequence Index Plots 7



Figure 4: An STN comparing two algorithms: Biased Random-Key Genetic Algorithm and Ant
Colony Optimization using the discrete example problem from Ochoa et al. [28]. The plot was
generated using the STNs online tool.

different geoms and aesthetics to represent the different heuristics. Additionally, notable nodes
are usually highlighted—like the best solution found by each algorithm, its start and end states, as
well as “shared” states that were visited in different runs. As is the case with LONs, STNs can be
compressed depending on the granularity used to represent the states, and additional metrics can
be calculated due to their graph structure. An example of an STN is shown in Figure 4, generated
by the STN Analytics online tool using the discrete example problem.4

Multimodality can be inferred from STNS by looking at the shared nodes. However, the notions
of distance and neighborhoods between the optima are not as clear as with LONs, since these
graphics were not specifically designed to highlight such features.

3.6 Violation Landscapes (VL)

An important feature of real-world optimization problems is the presence of constraints, and they
occur in both continuous and combinatorial landscapes. When X contains solutions that are not
feasible, we say that the solution is in violation. In a constrained search space, optimization algo-
rithms must navigate the landscape to find feasible solutions, and it can be challenging when the
constraints are complex or when the feasible region is small. It is, therefore, important to visualize
the violation landscape (VL), which is the subset of X that is feasible.

One way to visualize the VL is to plot the fitness of the solutions in X , but only showing the fea-
4See https://www.stn-analytics.com/.
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Figure 5: Fitness and violation landscapes of a 2D Constrained Ackley Function. The constraint is
handled as a penalty for all solutions b with f(b) > 15, creating two regions in X .

sible solutions. Another (and perhaps the most common) approach is to use color in the plot to
differentiate between the feasible and infeasible solutions. This seems more intuitive when the X is
continuous [17, 18]. Figure 5 shows an example of a 2D continuous functions with a constraint, the
Ackley function.

As shown in Figure 5, VL visualizations use color to represent the feasibility of a solution which
has a location determined by its x and y coordinates in the plot. To have a better overview of
the problem instance, both fitness and violation landscapes are usually presented next to one
another [17, 18]. However, using color to show infeasibility is not the only way to plot a VL. In fact,
the VL itself depends on the definition of constraint violation, and in turn, different visualizations
can be generated depending on the definitions used [50].

Combinatorial landscapes with constraints are more difficult to visualize, since the same issue as
with unconstrained landscapes persists, but now with the additional requirement of adding solution
feasibility to the plot. However, the same principles can be applied: color can be used to represent
the feasibility of a solution, and the x and y axes can be used to represent the solution itself (as in
Figure 5).

4 Combining Visualization Techniques

Different visualization techniques are not mutually exclusive. In fact, combining them can provide
a more comprehensive view of a combinatorial landscape, since different visualizations highlight
different aspects of the search space. Several ways of merging visualizations exist [7, 25], but
the most common are juxtaposition, superimposition, overloading and nesting [9]. In this work we
focus on the first two as a basis for combining visualization techniques, and present this process in
Figure 6.

Combining Visualization Techniques 9



Do the visualizations 
have unused 

aesthetic elements?

Use the unused 
aesthetic as a basis 
for superimposition

Are there space 
constraints?

Use juxtaposition of 
two visualizations

Sacrifice one of the 
aesthetics to convey 

information from 
another visualization

Yes Yes

No No

5

1

2

3

4

Superimposition

Juxtaposition

Figure 6: A simple process for combining visualizations. Superimposition may require additional
data transformations, while juxtaposition demands more space.

4.1 Juxtaposition

Placing different visualizations next to one another is the simplest way to have different views of
the same landscape. However, it requires an efficient relational linking and sufficient space to have
a comfortable layout [9]. As an example of juxtaposition, consider aligning two binary strings (one
on top of another). This view allows for immediate recognition of bits that are different at a given
position, and it can be useful to identify, for example, redundant features in feature selection [23,
37].

Most of the figures in this work (Figures 2, 3, 5, 7 and 8) are examples of juxtaposition. We now
discuss two case studies.

4.1.1 Juxtaposition of LONs: Zooming in on L

A first obvious case of study is the juxtaposition of two different views of the same object. In
Figure 7, we present two LON-based views of the same landscape: a feature selection problem
sampled with different levels of detail. On the left panel of Figure 7, a LON with all basin transitions
is presented, while the right panel shows a LON with only escape edges of size 3 or less. The
former presents an overview of the whole landscape (and the connectedness between all the 17
local optima), while the latter presents a detailed view of only those local optima that can be reached
in three or fewer bit flips from the other optima. In this case, juxtaposition allows us to switch the
view and zoom-in on the details of the important elements of the landscape.

10 Visualizing Multimodality in Combinatorial Search Landscapes



(a) A LON with all basin transition edges (b) A LON with escape edges with D = 3

Figure 7: LON-LON: Juxtaposition of two LONs, representing the feature selection problem on the
E-coli dataset [24], using a decision tree classifier. In 7b, the escape edges are only kept if their
Hamming distance dH ≤ D.

4.1.2 Juxtaposition of HBMs: Transformations on f

Since the HBM was designed to look at the whole search space, transformations of the fitness
function can be easily visualized by placing two HBMs side by side as long as the transformations
on f have the same domain (X ). In Figure 8 we show the landscape of a feature selection problem
under two different degrees of regularization. Here we used a colored outline to highlight local
and global optima, and can compare how the number (and distribution) of these optima changes
when the landscape is transformed. In this way, juxtaposition helps us identify that the ϵ = 1/8
regularization (cf. right panel in Figure 8) reduces the number of optima that originally existed
when ϵ = 0 (left panel in Figure 8).

4.2 Superimposition

A superimposed view can be obtained when a visualization is overlaid on top of another, resulting in
a new view that combines elements of both. These views are usually employed to highlight spatial
relations between the original visualizations since there is a one-to-one correspondence between
their spatial linking [9]. For instance, showing several routes in a Vehicle Routing or a Traveling
Salesman Problem on top of a map allows for an easy comparison between them.

Superimposition of different kinds of landscape visualizations can be done in a similar fashion if
there are free or unused aesthetics on at least one of them. Table 2 shows a summary of the
different aesthetics and geoms used by the three main visualization techniques studied in this
work—LONs, HBMs, and STNs. The aesthetic attributes that are not in use in one visualization
can be used to represent information from the other, as long as there exists a mapping between
them. A transformation might be needed to fit one of the aesthetics on top of another, but it can lead
to more informative designs, even when there is no isometric projection between their axes [19].

4.2 Superimposition 11



Figure 8: HBM-HBM: Juxtaposition of two HBMs for the Glass Identification dataset [6] with different
values of regularization. The local and global optima are highlighted with blue and red outlines,
respectively.

We now discuss a case study of superimposition, describing how to combine a LON and an HBM.

4.2.1 Superimposition of LON+HBM: Identification of L

A LON+HBM is a good example of superimposition as it gives a glimpse into the multimodality of
the landscape and the distribution of the optima. As an example, see Figure 9, where a LON is
plotted on top of an HBM depicting the landscape of toy problem: f(b) = sin (2Dec(b)) , ∀b ∈ B6.
The used aesthetics are the same as in the standalone plots, but we use the unused attributes of
one to merge into the other: LONs do not have a natural mapping to the x- and y-axes, but using the
HBM coordinate system, we can place the nodes in space using the same hinged-mapping. Thus,
identification of the location of a local optimum is possible, as well as working out which optimizer
b+ corresponds to a specific basin of attraction.

4.3 No Free Lunch in Landscape Visualization

Even when there are free attributes and a compromise can be made to merge two visualizations,
some combinations can become difficult to read. For example, using the unused aesthetic attribute
of STNs, we can plot the sequence of visited solutions on top of an HBM. However, the mapping
between the sequence of visited states and the HBM would be difficult to establish, as the x- and y-
axes of the HBM are not directly related to the sequence of the search. A possible workaround is to
use text labels inside each node to represent the sequence of a specific algorithm, and use color to
show different algorithms. The fitness would need to be taken out of the plot, with the opportunity to
compensate by plotting another HBM next to it. It should not take long to realize that this visualiza-
tion would quickly become difficult to read, as following different number sequences using different
colors for the foreground text and the background shape requires a lot of focus. Nevertheless, it is
a good example to understand the limitations of the different visualization techniques.

On the other hand, combining an HBM and a VL is trivial: using color to plot the feasibility of a
solution instead of the fitness. This works well because the position aesthetic in both visualization

12 Visualizing Multimodality in Combinatorial Search Landscapes



Table 2: Different aesthetic and geoms used by the three main visualization techniques studied. At-
tributes marked with N/A, also called unused aesthetic elements, are not used in the visualization
and are thus free to be used for other purposes, as is the case with the LON+HBM (superimposi-
tion).

Plot type Geoms Aesthetics

Primary Secondary Color Size Position Visibility

LON Circle Lines Basin of attraction Basin of attraction N/A L ⊂ X
HBM Circle Rings Fitness N/A b X
STN Circle Arrows Algorithm Frequency N/A Explored space

Triangle
Square

Combined visualizations

LON-LON Circle Lines Basin of attraction Basin of attraction N/A L ⊂ X
HBM-HBM Circle Rings Fitness N/A b f ◦ X , f ′ ◦ X
LON+HBM Circle Lines Basin of attraction Basin of attraction b X

techniques is used to represent the same feature of the landscape, which is the location of the
solution itself. Then, to convey more information, the feasibility HBM can be juxtaposed next to an
HBM with fitness, and the distribution of both feasible solutions and the optima over the landscape
can be observed.

5 Conclusions and Recommendations

In this work we discussed the importance of visualizing multimodality in combinatorial search land-
scapes. We have shown that different visualization techniques have their own strengths and lim-
itations, and provided a simple way to combine them as their composition can generate more
comprehensive views of the landscape. With the Grammar of Graphics, we have shown that the
different aesthetics and geoms can be employed to represent different features of the landscape,
and that the unused aesthetic attributes of one plot can extend the expressive power of another.

For future work, the use of another aesthetics might be worth visiting. In particular, the time
aesthetic—animated visualizations can provide a detailed view of the landscape in dynamic or
noisy scenarios. Considering other landscape visualization methods (e.g. attractor networks [44])
is another interesting path for future work.
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Figure 9: LON+HBM: a LON using the HBM coordinate system to visualize the landscape of f(b) =
sin (2Dec(b)) , ∀b ∈ B6. The color is used to represent the size of the basin of attraction. Figure
reproduced with permission from Masson et al. [19].
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Local Optimal Solutions Networks. In A. Auger, C. M. Fonseca, N. Lourenço, P. Machado,
L. Paquete, and D. Whitley, editors, Parallel Problem Solving from Nature – PPSN XV,
pages 232–244, Cham. Springer International Publishing, 2018. ISBN: 978-3-319-99259-4.
DOI: 10.1007/978-3-319-99259-4_19.

[13] A. Liefooghe, R. Tanabe, and S. Verel. Contrasting the Landscapes of Feature Selection
Under Different Machine Learning Models. In M. Affenzeller, S. M. Winkler, A. V. Kononova,
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