
Lecture 3
A∗ Search and Search in Complex Environments
TDT4136: Introduction to Artificial Intelligence

Xavier F. C. Sánchez Díaz

Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

September 1, 2025

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 1 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Outline

1 Recap

2 More on A∗

3 Local Search Algorithms

4 Nondeterministic and partially observable environments

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 2 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Recap on Uninformed Search

▶ Uninformed search strategies systematically navigate the search space blindly—not
questioning where the goal may be in the space.

▶ The search space is often very large.

▶ We can be smarter about it using a heuristic (guess estimate)
▶ We covered (Greedy) Best First, where you pick the option with the best estimate
▶ We also covered A∗, which uses both the cost and the estimate

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 3 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Recap on Uninformed Search

▶ Uninformed search strategies systematically navigate the search space blindly—not
questioning where the goal may be in the space.

▶ The search space is often very large.

▶ We can be smarter about it using a heuristic (guess estimate)
▶ We covered (Greedy) Best First, where you pick the option with the best estimate
▶ We also covered A∗, which uses both the cost and the estimate

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 3 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Friendly reminder
Things to look out for

Implementation details vary a lot, and can be tricky!

▶ Is the algorithm checking for redundant paths (graph search) or not (tree search)?
▶ Is the goal check performed early (when a node is generated) or late (when a node

is expanded)?
▶ Is the algorithm storing all reached states, or reconstructing the path from a

chain of parent nodes?

Read the book!
To become familiar with the algorithms and their implementations details, you should
read the book. These slides are not a replacement for the book; they are a summary of
the most important points.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 4 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Cheatsheet
Things to look out for

Most of the search strategies we cover in this course use the same algorithm to search.1

It is just Best-First-Search with different functions to decide which element will be
popped out of the priority queue:

Depth-First Search
f (n) = −depth(n)

Uniform-Cost Search (Dijkstra)
f (n) = g(n)

Greedy Best-First Search
f (n) = h(n)

A* Search
f (n) = g(n) + h(n)

1Except for BFS that has a separate algorithm.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 5 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

What if we consider the cost and the heuristic?

Our new heuristic function will consider both things:

f (n) = g(n) + h(n)

where

▶ g(n) is the cost we have paid so far to reach n
▶ h(n) is the estimated cost of the node (to the goal)
▶ f (n) is then the estimated cost of the cheapest solution through n to the goal

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 6 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

What if we consider the cost and the heuristic?

Our new heuristic function will consider both things:

f (n) = g(n) + h(n)

where

▶ g(n) is the cost we have paid so far to reach n
▶ h(n) is the estimated cost of the node (to the goal)
▶ f (n) is then the estimated cost of the cheapest solution through n to the goal

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 6 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

What if we consider the cost and the heuristic?

Our new heuristic function will consider both things:

f (n) = g(n) + h(n)

where
▶ g(n) is the cost we have paid so far to reach n

▶ h(n) is the estimated cost of the node (to the goal)
▶ f (n) is then the estimated cost of the cheapest solution through n to the goal

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 6 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

What if we consider the cost and the heuristic?

Our new heuristic function will consider both things:

f (n) = g(n) + h(n)

where
▶ g(n) is the cost we have paid so far to reach n
▶ h(n) is the estimated cost of the node (to the goal)

▶ f (n) is then the estimated cost of the cheapest solution through n to the goal

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 6 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

What if we consider the cost and the heuristic?

Our new heuristic function will consider both things:

f (n) = g(n) + h(n)

where
▶ g(n) is the cost we have paid so far to reach n
▶ h(n) is the estimated cost of the node (to the goal)
▶ f (n) is then the estimated cost of the cheapest solution through n to the goal

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 6 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the following estimated distances to the
goal:
▶ h(A) = 3
▶ h(B) = 3
▶ h(C) = 3
▶ h(G) = 0

S

A B

C

G

4 + 3 7 + 3

13

4

10
4

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 7 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the following estimated distances to the
goal:
▶ h(A) = 3
▶ h(B) = 3
▶ h(C) = 3
▶ h(G) = 0

S

A B

C

G

4 7 + 3

13 + 4 + 3

4 + 4 + 3

10
4

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 8 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the following estimated distances to the
goal:
▶ h(A) = 3
▶ h(B) = 3
▶ h(C) = 3
▶ h(G) = 0

S

A B

C

G

4 7

13 + 4 + 3

4 + 4 + 3

10 + 7 + 0
4

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 9 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the following estimated distances to the
goal:
▶ h(A) = 3
▶ h(B) = 3
▶ h(C) = 3
▶ h(G) = 0

S

A B

C

G

4 7

13 + 4 + 3

4

10 + 7 + 0
4 + 4 + 4 + 0

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 10 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the those estimated distances to the
goal:
▶ We have found the goal!

▶ It is complete for positive costs, within a
finite state space and an existing
solution.

▶ It is cost-optimal if certain conditions
are met

S

A B

C

G

4 7

13 + 4 + 3

4

10 + 7 + 0
4

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 11 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the those estimated distances to the
goal:
▶ We have found the goal!
▶ It is complete for positive costs, within a

finite state space and an existing
solution.

▶ It is cost-optimal if certain conditions
are met

S

A B

C

G

4 7

13 + 4 + 3

4

10 + 7 + 0
4

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 11 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗ search
Informed search strategies

With the those estimated distances to the
goal:
▶ We have found the goal!
▶ It is complete for positive costs, within a

finite state space and an existing
solution.

▶ It is cost-optimal if certain conditions
are met

S

A B

C

G

4 7

13 + 4 + 3

4

10 + 7 + 0
4

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 11 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗optimality
More on A∗

A∗ is cost-optimal if certain conditions are met. What are these conditions?

▶ Arc costs need to be positive2

▶ The heuristic function needs to be admissible and non-negative.

2They usually are.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 12 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A∗optimality
More on A∗

A∗ is cost-optimal if certain conditions are met. What are these conditions?

▶ Arc costs need to be positive2

▶ The heuristic function needs to be admissible and non-negative.

2They usually are.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 12 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Admissibility
More on A∗

Admissibility of h

We say a heuristic h is admissible if it never overestimates the cost from a node to the
goal node.

An admissible heuristic means that for every node n:
▶ h(n) >= 0, and
▶ h(goal) = 0

An admissible heuristic is optimistic!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 13 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Admissibility
More on A∗

Admissibility of h

We say a heuristic h is admissible if it never overestimates the cost from a node to the
goal node.

An admissible heuristic means that for every node n:
▶ h(n) >= 0, and
▶ h(goal) = 0

An admissible heuristic is optimistic!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 13 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Admissibility
More on A∗

Admissibility of h

We say a heuristic h is admissible if it never overestimates the cost from a node to the
goal node.

An admissible heuristic means that for every node n:
▶ h(n) >= 0, and
▶ h(goal) = 0

An admissible heuristic is optimistic!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 13 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A crazy example
More on A∗

A

h = 3

B

h = 1000

C

h = 1

G

h = 0

1

999

1 1

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 14 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A crazy example
More on A∗

A

h = 3

B

h = 1000

C

h = 1

G

h = 0

1

999

1 1

We would not choose the optimal path due to h(B) being overestimated of the actual cost!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 15 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A crazy example
More on A∗

A

h = 3

B

h = 1000

C

h = 1

G

h = 0

1

999

1 1

We would not choose the optimal path due to h(B) being overestimated of the actual cost!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 15 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency
More on A∗

Another important (and even stronger) property of a heuristic h is consistency.

Consistency of h

A heuristic h is consistent if for every node n and all of its successors n′ generated by an
action a, we have

h(n) ≤ c(n,a,n′) + h(n′)

In other words, the estimate of a node should be less or equal than the the estimate of a
descendant plus the cost of reaching there.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 16 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency
More on A∗

Another important (and even stronger) property of a heuristic h is consistency.

Consistency of h

A heuristic h is consistent if for every node n and all of its successors n′ generated by an
action a, we have

h(n) ≤ c(n,a,n′) + h(n′)

In other words, the estimate of a node should be less or equal than the the estimate of a
descendant plus the cost of reaching there.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 16 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency: an example
More on A∗

Consistency of h

A heuristic h is consistent if for every node n and all of its successors n′ generated by an
action a, we have

h(n) ≤ c(n,a,n′) + h(n′)

▶ A triangle inequality helps picturing it!
▶ Moving through h(n) has to be cheaper than

going to G via the successor n′

▶ This must be true for every successor n′ of n
▶ Think of an euclidean grid n

n′

G
h(n)

c(n,a,n′) h(n′)

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 17 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency and admissibility
More on A∗

Why is this important?

▶ A heuristic that is consistent is always admissible

▶ Not necessarily the other way around!

▶ Since a consistent heuristic is admissible, then a consistent heuristic is also always
cost-optimal

▶ A consistent heuristic h(n) ensures that the cost function f (n) = g(n) + h(n) is
monotonic nondecreasing

▶ That means that f (n) is non-decreasing along any path

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 18 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency and admissibility
More on A∗

Why is this important?

▶ A heuristic that is consistent is always admissible
▶ Not necessarily the other way around!

▶ Since a consistent heuristic is admissible, then a consistent heuristic is also always
cost-optimal

▶ A consistent heuristic h(n) ensures that the cost function f (n) = g(n) + h(n) is
monotonic nondecreasing

▶ That means that f (n) is non-decreasing along any path

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 18 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency and admissibility
More on A∗

Why is this important?

▶ A heuristic that is consistent is always admissible
▶ Not necessarily the other way around!

▶ Since a consistent heuristic is admissible, then a consistent heuristic is also always
cost-optimal

▶ A consistent heuristic h(n) ensures that the cost function f (n) = g(n) + h(n) is
monotonic nondecreasing

▶ That means that f (n) is non-decreasing along any path

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 18 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency and admissibility
More on A∗

Why is this important?

▶ A heuristic that is consistent is always admissible
▶ Not necessarily the other way around!

▶ Since a consistent heuristic is admissible, then a consistent heuristic is also always
cost-optimal

▶ A consistent heuristic h(n) ensures that the cost function f (n) = g(n) + h(n) is
monotonic nondecreasing

▶ That means that f (n) is non-decreasing along any path

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 18 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Consistency and admissibility
More on A∗

Why is this important?

▶ A heuristic that is consistent is always admissible
▶ Not necessarily the other way around!

▶ Since a consistent heuristic is admissible, then a consistent heuristic is also always
cost-optimal

▶ A consistent heuristic h(n) ensures that the cost function f (n) = g(n) + h(n) is
monotonic nondecreasing
▶ That means that f (n) is non-decreasing along any path

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 18 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Optimality and efficiency
More on A∗

▶ A∗ is optimally efficient with a consistent heuristic

▶ This means that any other search algorithm with the same heuristic values must
expand all nodes that A∗ expanded

However, the main issue of A∗ lies on its memory use. Some ways to reduce it:

▶ Reference count – remove a state from reached when there are no more ways to
reach it

▶ Beam search – limit size of frontier to k -best candidates

▶ Iterative deepening A∗ – gradually increase the f -cost cutoff .

▶ Memory-bounded A∗ – expand until memory is ful, and then drop the worst candidate
from frontier

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 19 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Optimality and efficiency
More on A∗

▶ A∗ is optimally efficient with a consistent heuristic

▶ This means that any other search algorithm with the same heuristic values must
expand all nodes that A∗ expanded

However, the main issue of A∗ lies on its memory use. Some ways to reduce it:

▶ Reference count – remove a state from reached when there are no more ways to
reach it

▶ Beam search – limit size of frontier to k -best candidates

▶ Iterative deepening A∗ – gradually increase the f -cost cutoff .

▶ Memory-bounded A∗ – expand until memory is ful, and then drop the worst candidate
from frontier

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 19 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Optimality and efficiency
More on A∗

▶ A∗ is optimally efficient with a consistent heuristic

▶ This means that any other search algorithm with the same heuristic values must
expand all nodes that A∗ expanded

However, the main issue of A∗ lies on its memory use. Some ways to reduce it:

▶ Reference count – remove a state from reached when there are no more ways to
reach it

▶ Beam search – limit size of frontier to k -best candidates

▶ Iterative deepening A∗ – gradually increase the f -cost cutoff .

▶ Memory-bounded A∗ – expand until memory is ful, and then drop the worst candidate
from frontier

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 19 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Optimality and efficiency
More on A∗

▶ A∗ is optimally efficient with a consistent heuristic

▶ This means that any other search algorithm with the same heuristic values must
expand all nodes that A∗ expanded

However, the main issue of A∗ lies on its memory use. Some ways to reduce it:

▶ Reference count – remove a state from reached when there are no more ways to
reach it

▶ Beam search – limit size of frontier to k -best candidates

▶ Iterative deepening A∗ – gradually increase the f -cost cutoff .

▶ Memory-bounded A∗ – expand until memory is ful, and then drop the worst candidate
from frontier

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 19 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Optimality and efficiency
More on A∗

▶ A∗ is optimally efficient with a consistent heuristic

▶ This means that any other search algorithm with the same heuristic values must
expand all nodes that A∗ expanded

However, the main issue of A∗ lies on its memory use. Some ways to reduce it:

▶ Reference count – remove a state from reached when there are no more ways to
reach it

▶ Beam search – limit size of frontier to k -best candidates

▶ Iterative deepening A∗ – gradually increase the f -cost cutoff .

▶ Memory-bounded A∗ – expand until memory is ful, and then drop the worst candidate
from frontier

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 19 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

Generalised heuristic search

f (n) = g(n) + w · h(n)

where w is a weight defining how important the heuristic h(n) is.

In most other applications, we usually have w1 and w2, one for g(n) and one for h(n). The
book uses only w for h(n).

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 20 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path

▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate

▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path

▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate

▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!

▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate

▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.

▶ It is also known as Dijkstra’s algorithm.
▶ With w = ∞ you only care about the estimate

▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate

▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate

▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate
▶ Choose the one that seems the cheapest

▶ This is Greedy Best-First search
▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate
▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate
▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates

▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate
▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates
▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate
▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates
▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


A generalised heuristic search
More on A∗

f (n) = g(n) + w · h(n)

▶ With w = 0 you only care about the cost of the path
▶ Choose the cheapest!
▶ This is called uniform-cost search and it’s an uninformed search.
▶ It is also known as Dijkstra’s algorithm.

▶ With w = ∞ you only care about the estimate
▶ Choose the one that seems the cheapest
▶ This is Greedy Best-First search

▶ with w = 1 you care equally about the path cost and the estimates
▶ This is A∗

Of course you can set w to something else, depending for example if there is uncertainty
on your heuristic (but this then becomes a whole other course :^))

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 21 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Building heuristics
More on A∗

How far are we from solving this sliding puzzle?

▶ h1(n) will be the number of misplaced tiles
▶ h2(n) will be the total Manhatttan distancea

anumber of squares away from the desired location

Remember that each configuration is a state!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 22 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Building heuristics
More on A∗

How far are we from solving this sliding puzzle?

▶ h1(n) will be the number of misplaced tiles
▶ h2(n) will be the total Manhatttan distancea

anumber of squares away from the desired location

Remember that each configuration is a state!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 22 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Other ideas for building heuristics
More on A∗

▶ Consider relaxations of the problem

▶ Consider creating the heuristic by looking backwards from the goal.

▶ Consider dividing into subproblems!
▶ For example, instead of solving the whole sliding puzzle at once, consider getting in

place four tiles only
▶ Then store all these solutions in a DB. Create an admissible heuristic for this

subproblem
▶ Combine the subproblems to choose the best heuristic

The process of choosing the appropriate representation, data structures and heuristics
for a problem is known as modelling and is crucial for AI developers and researchers!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 23 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Dominance: comparing heuristics
More on A∗

Which of the heuristics is better?

Admissible heuristics can be compared by looking at their values.

Heuristic Domination
An admissible heuristic h2 it is said to dominate another admissible heuristic h1 if
for every node n, h2(n) ≥ h1(n).
This will reflect in A∗ expanding fewer nodes on h2, and thus finding an optimal solution,
faster.

A generalisation of this would then be

hbest(n) = max(ha(n),hb(n), . . . )

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 24 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Dominance: comparing heuristics
More on A∗

Which of the heuristics is better?
Admissible heuristics can be compared by looking at their values.

Heuristic Domination
An admissible heuristic h2 it is said to dominate another admissible heuristic h1 if
for every node n, h2(n) ≥ h1(n).
This will reflect in A∗ expanding fewer nodes on h2, and thus finding an optimal solution,
faster.

A generalisation of this would then be

hbest(n) = max(ha(n),hb(n), . . . )

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 24 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Dominance: comparing heuristics
More on A∗

Which of the heuristics is better?
Admissible heuristics can be compared by looking at their values.

Heuristic Domination
An admissible heuristic h2 it is said to dominate another admissible heuristic h1 if
for every node n, h2(n) ≥ h1(n).
This will reflect in A∗ expanding fewer nodes on h2, and thus finding an optimal solution,
faster.

A generalisation of this would then be

hbest(n) = max(ha(n),hb(n), . . . )

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 24 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Section 3

Search in Complex Environments

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 25 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching in complex environments

▶ Both informed and uninformed searching strategies are designed to explore search
spaces systematically

▶ They keep one or more paths in memory, and record which alternatives have been
explored at each point along the path

▶ The path to that goal constitutes a solution
▶ But in most problems in the real world, the path to a solution might be irrelevant

If we only care about finding a solution, then there are better ways to search the space!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 26 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching in complex environments

▶ Both informed and uninformed searching strategies are designed to explore search
spaces systematically

▶ They keep one or more paths in memory, and record which alternatives have been
explored at each point along the path

▶ The path to that goal constitutes a solution
▶ But in most problems in the real world, the path to a solution might be irrelevant

If we only care about finding a solution, then there are better ways to search the space!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 26 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Local Search

▶ It uses a single current node and moves to neighbouring nodes

▶ It eases up on the completeness and optimality in the interest of improving time and
space complexity3

▶ Local Search algorithms use “little” memory (usually a constant amount)

▶ They can often find reasonable solutions in very large (or infinite) state spaces

3as in most real world applications
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 27 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Local Search

▶ It uses a single current node and moves to neighbouring nodes

▶ It eases up on the completeness and optimality in the interest of improving time and
space complexity3

▶ Local Search algorithms use “little” memory (usually a constant amount)

▶ They can often find reasonable solutions in very large (or infinite) state spaces

3as in most real world applications
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 27 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Local Search

▶ It uses a single current node and moves to neighbouring nodes

▶ It eases up on the completeness and optimality in the interest of improving time and
space complexity3

▶ Local Search algorithms use “little” memory (usually a constant amount)

▶ They can often find reasonable solutions in very large (or infinite) state spaces

3as in most real world applications
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 27 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Local Search

▶ It uses a single current node and moves to neighbouring nodes

▶ It eases up on the completeness and optimality in the interest of improving time and
space complexity3

▶ Local Search algorithms use “little” memory (usually a constant amount)

▶ They can often find reasonable solutions in very large (or infinite) state spaces

3as in most real world applications
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 27 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


The search landscape
Search in complex environments

Usually, the state space is referred
to as the search space. We can
visualise this space by looking at
the heuristic function!

f (x) =
d∑

i=1

x2

4000
−

d∏
i=1

cos

(
xi√

i

)
+ 1

The Griewank function. Image from Surjanovic & Bingham
https://www.sfu.ca/~ssurjano/griewank.html

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 28 / 46

https://www.sfu.ca/~ssurjano/griewank.html
https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


The search landscape
Search in complex environments

current
state

objective function

state space

global maximum

local maximum

"flat" local maximum

shoulder

▶ Each point in the landscape
represents a state in the
search space and has “an
elevation” (its h(n))

▶ If the elevation corresponds to
an objective function, then the
aim is to find the highest peak
(or maximum)

▶ If the elevation corresponds to
a cost function, then we look
for the lowest valley (or
minimum)

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 29 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


The search landscape
Search in complex environments

Recall our search problems.

S

A B

C

G

4 7

13

4

10
4

▶ A is a neighbour of S, C and itself
because those are the states than can
be reached from A.

▶ The neighbourhood of A is then
{A,C,S}.

▶ This concept of neighbourhood is very
important for local search, as we
decide where to move next by looking
around us!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 30 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Section 4

Local Search Algorithms

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 31 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


As the last time with algorithms, please check
the full details on the book!



Hill climbing and gradient descent
Local search algorithms

Idea: Go to the best spot you see now.

▶ Assume you are doing
maximisation

▶ You then want to climb the
tallest peak

▶ This is called hill-climbing!
1011... 1111...

1001...

0011...
Generate
Neighbors

Global
Optimum

Local
Optimum

How
to get

across??

Plateau

If you are minimising instead, then the procedure is called gradient descent as we want
to move towards the direction where the difference in “height” is largest.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 33 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Hill climbing and gradient descent
Local search algorithms

Idea: Go to the best spot you see now.

▶ Assume you are doing
maximisation

▶ You then want to climb the
tallest peak

▶ This is called hill-climbing!
1011... 1111...

1001...

0011...
Generate
Neighbors

Global
Optimum

Local
Optimum

How
to get

across??

Plateau

If you are minimising instead, then the procedure is called gradient descent as we want
to move towards the direction where the difference in “height” is largest.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 33 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!

▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions

▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches

▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!

▶ This is what we call stochastic local search.
▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”

decisions

▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches

▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions

▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches

▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions

▶ This is the key to the simulated annealing algorithm
▶ Idea 3: Search multiple paths in batches

▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches

▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches

▶ This is the key idea behind population-based optimisation
▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches
▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches
▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size

▶ For example, consider 2-moves-away adjacency instead
▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches
▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size
▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches
▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size
▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!

▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches
▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size
▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!
▶ Either via long jumps when you are not doing very good

▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


How to get across?
Both hill-climbing and gradient descent get stuck in local optima. How do we get out
of this mess?

▶ Idea: take some not so good decisions every now and then!
▶ This is what we call stochastic local search.

▶ Idea 2: Make it so that you gradually reduce the frequency of taking such “bad”
decisions
▶ This is the key to the simulated annealing algorithm

▶ Idea 3: Search multiple paths in batches
▶ This is the key idea behind population-based optimisation

▶ Idea 4: Increase the neighbourhood size
▶ For example, consider 2-moves-away adjacency instead

▶ Idea 5: Jump!
▶ Either via long jumps when you are not doing very good
▶ Or doing short hops when you are in a promising state (you do not want to miss it)

This line of research is usually referred to as metaheuristics.
X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 34 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly
4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states

2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly
4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)

3. Generate child states by combining parent states randomly
4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly

4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly
4. Add child states to the population

5. Replace the old population by the new
This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly
4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly
4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Genetic Algorithms
Local search algorithms

A well-known metaheuristic in the family of population-based optimisers is the genetic
algorithm.

1. Start with a population of k randomly generated states
2. Randomly choose two parent states weighted by their fitness (objective function)
3. Generate child states by combining parent states randomly
4. Add child states to the population
5. Replace the old population by the new

This process will be repeated until a solution has been found, or until enough generations
have been replaced.

We have a whole course on evolutionary computation methods during the spring semester:
IT3708 Bio-Inspired AI!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 35 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


The 8-queens problem
Place 8 queens in a chess board such that no queen checks each other.

(a) Queen constraints (b) Generated conflicts (c) Possible solution

Figure: The 8-queens problem. 1a shows the constraints (in pink) imposed by the placement of a
single queen piece (in blue). 1b highlights the conflicts arising from a possible configuration of the
board. 1c illustrates one possible solution with no conflicts.

See a worked example in https://ntnu-ai-lab.github.io/EvoLP.jl/stable/tuto/8_queens.html

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 36 / 46

https://ntnu-ai-lab.github.io/EvoLP.jl/stable/tuto/8_queens.html
https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Section 5

Nondeterministic and partially observable environments

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 37 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching with Nondeterminism

▶ So far, we have assumed that actions are deterministic

▶ That our intended action will always yield the result we expect

▶ In the real-world, things do not always go as expected

▶ To account for different possible outcomes, we need to come up with a contingency
plan instead of a single path of actions

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 38 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching with Nondeterminism

▶ So far, we have assumed that actions are deterministic
▶ That our intended action will always yield the result we expect

▶ In the real-world, things do not always go as expected

▶ To account for different possible outcomes, we need to come up with a contingency
plan instead of a single path of actions

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 38 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching with Nondeterminism

▶ So far, we have assumed that actions are deterministic
▶ That our intended action will always yield the result we expect

▶ In the real-world, things do not always go as expected

▶ To account for different possible outcomes, we need to come up with a contingency
plan instead of a single path of actions

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 38 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching with Nondeterminism

▶ So far, we have assumed that actions are deterministic
▶ That our intended action will always yield the result we expect

▶ In the real-world, things do not always go as expected

▶ To account for different possible outcomes, we need to come up with a contingency
plan instead of a single path of actions

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 38 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Example: The Erratic Vacuum World
Searching with Nondeterminism

▶ Nondeterministic suck action:
suck(s1) = {s5, s7}

▶ which means both states s5 and s7 are
possible outcomes of executing a suck
action on state s1

▶ suck(s7) = {s3, s7}

▶ Which means both s3 and s7 are
possible outcomes of suck on s7

Nondeterminism can happen with other
actions like moveRight ! See the slippery
vacuum world in the book!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 39 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Example: The Erratic Vacuum World
Searching with Nondeterminism

▶ Nondeterministic suck action:
suck(s1) = {s5, s7}
▶ which means both states s5 and s7 are

possible outcomes of executing a suck
action on state s1

▶ suck(s7) = {s3, s7}

▶ Which means both s3 and s7 are
possible outcomes of suck on s7

Nondeterminism can happen with other
actions like moveRight ! See the slippery
vacuum world in the book!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 39 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Example: The Erratic Vacuum World
Searching with Nondeterminism

▶ Nondeterministic suck action:
suck(s1) = {s5, s7}
▶ which means both states s5 and s7 are

possible outcomes of executing a suck
action on state s1

▶ suck(s7) = {s3, s7}

▶ Which means both s3 and s7 are
possible outcomes of suck on s7

Nondeterminism can happen with other
actions like moveRight ! See the slippery
vacuum world in the book!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 39 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Example: The Erratic Vacuum World
Searching with Nondeterminism

▶ Nondeterministic suck action:
suck(s1) = {s5, s7}
▶ which means both states s5 and s7 are

possible outcomes of executing a suck
action on state s1

▶ suck(s7) = {s3, s7}
▶ Which means both s3 and s7 are

possible outcomes of suck on s7

Nondeterminism can happen with other
actions like moveRight ! See the slippery
vacuum world in the book!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 39 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Example: The Erratic Vacuum World
Searching with Nondeterminism

▶ Nondeterministic suck action:
suck(s1) = {s5, s7}
▶ which means both states s5 and s7 are

possible outcomes of executing a suck
action on state s1

▶ suck(s7) = {s3, s7}
▶ Which means both s3 and s7 are

possible outcomes of suck on s7

Nondeterminism can happen with other
actions like moveRight ! See the slippery
vacuum world in the book!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 39 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Example: The Erratic Vacuum World
Searching with Nondeterminism

▶ Nondeterministic suck action:
suck(s1) = {s5, s7}
▶ which means both states s5 and s7 are

possible outcomes of executing a suck
action on state s1

▶ suck(s7) = {s3, s7}
▶ Which means both s3 and s7 are

possible outcomes of suck on s7

Nondeterminism can happen with other
actions like moveRight ! See the slippery
vacuum world in the book!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 39 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


AND-OR search trees
Searching with Nondeterminism

One way to handle these, is to
consider compound nodes, made
up of the possible states after a
given action

▶ OR nodes represent actions
▶ AND nodes represent

outcomes
▶ Since it is a tree, we can

search in it
▶ This is called AND-OR

search
▶ It is recursive, with a base

case of either failure or an
empty plan

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 40 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching in Partially Observable Environments

▶ So far, we have assumed that the agent knows exactly the state of its environment

▶ In reality, an agent receives partial (and possibly noisy) observations

▶ Therefore, the state can only be estimated through a “belief”

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 41 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Sensorless deterministic vacuum world
Searching in partially observable environments

▶
Result({1,2,3,4,5,6,7,8},moveRight) =
{2,4,6,8}

▶ Which means that executing
moveRight on any state s ∈ S will yield
a result in {2,4,6,8}

▶ Result({2,4,6,8},Suck) = {4,8}
▶ Result({4,8},Left) = {3,7}
▶ Result({3,7},Suck) = {7}

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 42 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Sensorless deterministic vacuum world
Searching in partially observable environments

▶
Result({1,2,3,4,5,6,7,8},moveRight) =
{2,4,6,8}
▶ Which means that executing

moveRight on any state s ∈ S will yield
a result in {2,4,6,8}

▶ Result({2,4,6,8},Suck) = {4,8}
▶ Result({4,8},Left) = {3,7}
▶ Result({3,7},Suck) = {7}

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 42 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Sensorless deterministic vacuum world
Searching in partially observable environments

▶
Result({1,2,3,4,5,6,7,8},moveRight) =
{2,4,6,8}
▶ Which means that executing

moveRight on any state s ∈ S will yield
a result in {2,4,6,8}

▶ Result({2,4,6,8},Suck) = {4,8}

▶ Result({4,8},Left) = {3,7}
▶ Result({3,7},Suck) = {7}

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 42 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Sensorless deterministic vacuum world
Searching in partially observable environments

▶
Result({1,2,3,4,5,6,7,8},moveRight) =
{2,4,6,8}
▶ Which means that executing

moveRight on any state s ∈ S will yield
a result in {2,4,6,8}

▶ Result({2,4,6,8},Suck) = {4,8}
▶ Result({4,8},Left) = {3,7}

▶ Result({3,7},Suck) = {7}

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 42 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Sensorless deterministic vacuum world
Searching in partially observable environments

▶
Result({1,2,3,4,5,6,7,8},moveRight) =
{2,4,6,8}
▶ Which means that executing

moveRight on any state s ∈ S will yield
a result in {2,4,6,8}

▶ Result({2,4,6,8},Suck) = {4,8}
▶ Result({4,8},Left) = {3,7}
▶ Result({3,7},Suck) = {7}

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 42 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Sensorless deterministic vacuum world
Searching in partially observable environments

▶
Result({1,2,3,4,5,6,7,8},moveRight) =
{2,4,6,8}
▶ Which means that executing

moveRight on any state s ∈ S will yield
a result in {2,4,6,8}

▶ Result({2,4,6,8},Suck) = {4,8}
▶ Result({4,8},Left) = {3,7}
▶ Result({3,7},Suck) = {7}

Think of 5D-chess: you solve the problem on multiple paths at the same time!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 42 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Predicting the next state with sensorless agents
Searching in partially observable environments

We are, in a way, making compound nodes with multiple outcomes in, where some of our
actions lead to specific environment settings inside those belief states.

Of course it can be both nondeterministic and partially observable!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 43 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Predicting the next state with sensorless agents
Searching in partially observable environments

We are, in a way, making compound nodes with multiple outcomes in, where some of our
actions lead to specific environment settings inside those belief states.

Of course it can be both nondeterministic and partially observable!

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 43 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching through the belief space in deterministic environments
If we have a deterministic setting, we can use an ordinary search algorithm.

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 44 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Searching through the belief space in partially observable
environments
With sensors

▶ The agent knows where it is and see the dirt (if any) on its spot
▶ The transition model becomes a function of a belief state, an action, and a

another belief state
▶ In case of nondeterminism (right), we do like Dr. Strange and consider possible

outcomes on different universes. How?

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 45 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Seaching through the belief space in partially observable
environments
With sensors, in a nondeterministic world

▶ Using an AND-OR tree

▶ Notice how the nodes are now belief states
▶ The solution is a conditional plan

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 46 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Seaching through the belief space in partially observable
environments
With sensors, in a nondeterministic world

▶ Using an AND-OR tree
▶ Notice how the nodes are now belief states

▶ The solution is a conditional plan

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 46 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi


Seaching through the belief space in partially observable
environments
With sensors, in a nondeterministic world

▶ Using an AND-OR tree
▶ Notice how the nodes are now belief states
▶ The solution is a conditional plan

X. Sánchez Díaz NTNU IE IDI Search B Autumn 2025 46 / 46

https://www.ntnu.edu/
https://www.ntnu.edu/ie
https://www.ntnu.edu/idi

	Recap
	More on A*
	Search in Complex Environments
	Local Search Algorithms
	Nondeterministic and partially observable environments

