
N
or
w
eg
ia
n
U
ni
ve
rs
ity

of
Sc
ie
nc
e
an
d
Te
ch
no

lo
gy Documenting code for your

research
Towards reproducibility I

Xavier Sánchez Díaz

February 17, 2022



2 / 16

Outline

Motivation

Documentation

Python tools

Style guides

Type-hinting

Docstrings

Is it really worth it?

Recap



3 / 16

The reproducibility crisis
Motivation

“Recent studies imply that research presented at top
AI conferences is not documented well enough for the
research to be reproduced. . . ” (O. E. Gundersen)

Standing on the Feet of Giants – Reproducibility in AI, AIMag, vol. 40, no. 4, pp. 9-23,
Dec. 2019.



4 / 16

The reproducibility crisis
Motivation

For a research piece to be trustworthy it needs to be:

I Open
I Available to everyone
I Accessible to everyone

I Explainable
I Via extrinsic explanations (testing)
I Via intrinsic explanations (documentation)

I Reproducible
I Clear methodology
I Dataset available



4 / 16

The reproducibility crisis
Motivation

For a research piece to be trustworthy it needs to be:

I Open
I Available to everyone
I Accessible to everyone

I Explainable
I Via extrinsic explanations (testing)
I Via intrinsic explanations (documentation)

I Reproducible
I Clear methodology
I Dataset available



5 / 16

What is documentation?
Documentation

Documentation in Computer Science usually refers to the collection of
technical and detailed information and specification about a piece of
software. It usually includes (but is not limited to):

I Comments in the code

I Docstrings

I Diagrams

I Use cases

I Manuals

I Guides and Tutos



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



6 / 16

Levels of documentation
Documentation

1. Following style guides/programming principles for your code

2. Comments in your code

3. Type-hinting

4. Docstrings in your code

5. Following style guides for your docstrings

6. Generate a manual for your software

7. Unit tests



7 / 16

Style guides
Python tools

Python purists have these Python Enhancements Proposals (PEP) that
you are encouraged to follow. The most important are PEP 0, PEP 8 and
PEP 257.

PEP0
Index of PEPs

PEP8
Naming conventions, max. line width, spaces between
methods, spaces before comments, spaces between
operators, order of arguments, etc.

PEP257
Docstrings conventions and recommendations



8 / 16

Type-hinting
Python tools

Type-hinting is an incredibly useful addition to Python 3 in which you
annotate your code with the datatypes that you expect for functions
and variables. So this:

1 def somefunc(x,y):
2 # do some stuff
3 return x + y

Becomes this:

1 def somefunc(x: int , y: int) -> int:
2 # do some stuff
3 return x + y



9 / 16

Type-hinting
Python tools

You can also do the same with more complex datatypes, too:

1 def somefunc(x: np.ndarray , y: np.ndarray) -> tuple:
2 # do some stuff
3 return 2 * x, 3 * y



10 / 16

Docstrings
Python tools

Docstrings (short for documentation strings) are extended summaries of
what a piece of code is supposed to do. They can span multiple lines
(see PEP257) and are located below the signature of function and
methods:

1 def feasible(ind: ind_type) -> bool:
2 """ Define feasibility region for individuals of
3 ind_type. Returns a boolean.
4 """
5 w = weight(ind)
6 feas = False
7
8 if w <= C:
9 feas = True
10 return feas



11 / 16

Stylised docstrings
Python tools

Of course there are style guides for docstrings:

1 def cxOnePoint(ind1: ndarray , ind2, R: Random = None) -> tuple:
2 """ Performs crossover between two numpy array individuals using
3 one crossover point. The crossover is performed in place.
4
5 Parameters
6 ----------
7 ind1 : ndarray
8 First individual to participate in the crossover
9 ind2 : ndarray
10 Second individual to participate in the crossover
11 R : Random , optional
12 Random number generator to set deterministic seed , by default None
13
14 Returns
15 -------
16 tuple of ndarray
17 Tuple of modified individuals
18 """
19 if R is None:
20 R = Random ()
21 ind_size = ind1.shape[0]
22 p = R.randint(1, ind_size)
23 ind1[p:], ind2[p:] = ind2[p:]. copy(), ind1[p:]. copy()
24 return ind1, ind2



Is it really worth it?

Yes.



Is it really worth it?

Yes.



13 / 16

Your editor recognises the hints
Is it really worth it?

Readability is not the only benefit you get from properly documenting
your code:

1. Linters recognise type hinting and include it the signatures when
looking for help or code definitions.

2. Docstrings are shown when using the help() function (e.g. in
Jupyter)

3. There are automatic tools for documentation generation via
docstring extraction
I See Sphinx, Javadoc or Doxygen
I You can extend these descriptions manually with examples or math
I Examples can be used for unit testing!



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



14 / 16

What can I do then?
Recap

1. Following style guides/programming principles for your code (PEPs)

2. Comments in your code (Mandatory)

3. Type-hinting (Highly suggested)

4. Docstrings in your code (Highly suggested)

5. Following style guides for your docstrings (Encouraged)

6. Generate a manual for your software (Encouraged)

7. Unit tests (Encouraged but complicated)



15 / 16

Additional notes
Recap

I Julia uses docstrings in Markdown

I R has markdown docs

I Jupyter has markdown for you to make executable and explainable
code

I Sphinx can be used for languages other than Python via extensions

I Javadoc (Java) and Doxygen (Java, C++, PHP...) are good alternatives
to Sphinx

I Git is crucial. GitHub/GitLab wikis are another alternative for code
documentation.



16 / 16

Thank you!
Slides available at

https://saxarona.github.io/project/python-docs/

https://saxarona.github.io/project/python-docs/

	Motivation
	Documentation
	Python tools
	Style guides
	Type-hinting
	Docstrings

	Is it really worth it?
	Recap

