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Optimisation problems are common
Motivation

Here’s a couple of combinatorial and parametric optimisation problems for you:

1. Pack a selection of items inside a container with limited capacity, such that
the total value of the items is maximal.

2. Assign guests to seats in order to avoid conflicting scenarios at a gala
dinner.

3. Visit all REMA 1000s and Bunnpris stores in the city such that the distance
travelled is minimal.

4. Fine tune hyperparameters of your machine learning model.
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Optimisation problems are hard
Motivation

I Knapsack Problems: NP-hard with complexity of O(cn) via dynamic
programming. Intractable when c� n.

I Constraint Satisfaction Problems (CSP): NP-complete with
upper-bound of O(dn) for a maximum domain size d and n variables.

I Vehicle Routing: NP-complete with upper-bound of O(n!) for n visited
nodes.

I Parametric optimisation: Can be transformed into a CSP if considering
discrete domains so O(dn)
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Let’s try to solve the seating problem!
Heuristics

Three available tables (one with 5 seats and two with 6 seats each). Here are
the hard requirements:

I The Pharaoh’s family (Dad, Mom and two kids) can’t be near the Priest.
The family kids are intrigued by the Robot so they want to sit on the same
table.

I Demis, Vangelis and Mikis (The Greek) need to be on the same table.
I Wilson and Akerfelt want to be seated with The Greek, but don’t want to

be in the same table than Parsons.
I Parsons and Gilmour prefer to be with one another.
I Dickinson, Harris, Dio and Summers—the metalheads— are easy going.

No restrictions, just beer.
I The Priest doesn’t want to be near the metalheads nor the Robot.
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Intelligent search
Heuristics

Congratulations! You just used your brain to make an intelligent decision:

I Assign first the most-conflicting individual

I Proceed with the easy constraints

I Assign later the least-conflicting people

This is a heuristic!
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There’s no better approach
No Free Lunch

However the same ‘intelligent decision’ can’t be applied to all problem
instances. Each instance is different and some methods are better than others
depending on many factors specific to each problem. This is called the No Free
Lunch theorem.

Can we characterise problems to decide
which method to use?
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Deciding what to do is hard
The Algorithm Selection Problem

Since no better approach exists, then I should use the best method available
depending on the problem. This is NP-Complete.

Do I get better results if I mix heuristics? Is there a common pattern to all
my examples so that I can solve them?
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Is there really something to learn from my data?
The Computational Learning Theory

The problem of finding a function which accurately characterises a pattern for a
certain kind of problem is NP-hard (as is determining if the next block in a shaft
is a Diamond Ore in Minecraft). There’s no way to know for sure.

But we can select, and mix, and generate,
and modify, and see if we come up with a

generalisation.
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General solvers
Hyper-heuristics

This is the idea behind a hyper-heuristic—a general solver which operates over
the heuristic space instead of the solution space.

Similar to algorithm portfolios and ensembles, the hyper-heuristic operates
on heuristics and selects or generates algorithms from existing solvers
according to an objective function.
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The Hyper-heuristic model
Hyper-heuristics

The Learning mechanism could be a
Machine Learning model or a
metaheuristic:

I Evolutionary and stochastic
algorithms

I Swarm intelligence &
Simulated Annealing

I Reinforced & Q-learning

I Neural Networks
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The Hyper-heuristic model
Hyper-heuristics

Both the Pool of available Solvers
and the Dataset depend on your
problem domain:

I Knapsack & Bin Packing

I Constraint Satisfaction

I Jobshop Scheduling & Vehicle
Routing
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The Hyper-heuristic model
Hyper-heuristics

The Performance Measure is usually
an objective function, per
instance or overall (per dataset)
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The Hyper-heuristic model
Hyper-heuristics

The output hyper-heuristic could be
anything from

I A function (mapping heuristics
to instances)

I A vector (or sequence of
heuristics)

I A probability distribution (of
heuristics)

I A trained model (or pattern
description)
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It is now a search problem
Hyper-heuristics

Using a hyper-heuristic the problem is solved by searching for a valid, feasible
or a good approximation of the optimal solution.

Therefore, the difficulty now lies on optimising the search, which is another
hard problem.

We do our best.
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Thank you!
Slides available at

https://saxarona.github.io/project/hhs-intro/

https://saxarona.github.io/project/hhs-intro/
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